Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Genom ; 4(6): 100581, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38823397

ABSTRACT

Cell atlases serve as vital references for automating cell labeling in new samples, yet existing classification algorithms struggle with accuracy. Here we introduce SIMS (scalable, interpretable machine learning for single cell), a low-code data-efficient pipeline for single-cell RNA classification. We benchmark SIMS against datasets from different tissues and species. We demonstrate SIMS's efficacy in classifying cells in the brain, achieving high accuracy even with small training sets (<3,500 cells) and across different samples. SIMS accurately predicts neuronal subtypes in the developing brain, shedding light on genetic changes during neuronal differentiation and postmitotic fate refinement. Finally, we apply SIMS to single-cell RNA datasets of cortical organoids to predict cell identities and uncover genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.


Subject(s)
Deep Learning , Sequence Analysis, RNA , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Sequence Analysis, RNA/methods , Animals , Brain/cytology , Brain/metabolism , Neurons/metabolism , Neurons/cytology , Organoids/metabolism , Organoids/cytology , Cell Differentiation/genetics , Mice
2.
bioRxiv ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-36909548

ABSTRACT

Large single-cell RNA datasets have contributed to unprecedented biological insight. Often, these take the form of cell atlases and serve as a reference for automating cell labeling of newly sequenced samples. Yet, classification algorithms have lacked the capacity to accurately annotate cells, particularly in complex datasets. Here we present SIMS (Scalable, Interpretable Machine Learning for Single-Cell), an end-to-end data-efficient machine learning pipeline for discrete classification of single-cell data that can be applied to new datasets with minimal coding. We benchmarked SIMS against common single-cell label transfer tools and demonstrated that it performs as well or better than state of the art algorithms. We then use SIMS to classify cells in one of the most complex tissues: the brain. We show that SIMS classifies cells of the adult cerebral cortex and hippocampus at a remarkably high accuracy. This accuracy is maintained in trans-sample label transfers of the adult human cerebral cortex. We then apply SIMS to classify cells in the developing brain and demonstrate a high level of accuracy at predicting neuronal subtypes, even in periods of fate refinement, shedding light on genetic changes affecting specific cell types across development. Finally, we apply SIMS to single cell datasets of cortical organoids to predict cell identities and unveil genetic variations between cell lines. SIMS identifies cell-line differences and misannotated cell lineages in human cortical organoids derived from different pluripotent stem cell lines. When cell types are obscured by stress signals, label transfer from primary tissue improves the accuracy of cortical organoid annotations, serving as a reliable ground truth. Altogether, we show that SIMS is a versatile and robust tool for cell-type classification from single-cell datasets.

3.
Nucleic Acids Res ; 49(W1): W624-W632, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33978761

ABSTRACT

Dockstore (https://dockstore.org/) is an open source platform for publishing, sharing, and finding bioinformatics tools and workflows. The platform has facilitated large-scale biomedical research collaborations by using cloud technologies to increase the Findability, Accessibility, Interoperability and Reusability (FAIR) of computational resources, thereby promoting the reproducibility of complex bioinformatics analyses. Dockstore supports a variety of source repositories, analysis frameworks, and language technologies to provide a seamless publishing platform for authors to create a centralized catalogue of scientific software. The ready-to-use packaging of hundreds of tools and workflows, combined with the implementation of interoperability standards, enables users to launch analyses across multiple environments. Dockstore is widely used, more than twenty-five high-profile organizations share analysis collections through the platform in a variety of workflow languages, including the Broad Institute's GATK best practice and COVID-19 workflows (WDL), nf-core workflows (Nextflow), the Intergalactic Workflow Commission tools (Galaxy), and workflows from Seven Bridges (CWL) to highlight just a few. Here we describe the improvements made over the last four years, including the expansion of system integrations supporting authors, the addition of collaboration features and analysis platform integrations supporting users, and other enhancements that improve the overall scientific reproducibility of Dockstore content.


Subject(s)
Computational Biology/methods , Information Dissemination , Internet , Software , Workflow , Cloud Computing , Computational Biology/education , Data Visualization , Humans , National Heart, Lung, and Blood Institute (U.S.) , National Human Genome Research Institute (U.S.) , Reproducibility of Results , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...