Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3979, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729972

ABSTRACT

A primary response of many marine ectotherms to warming is a reduction in body size, to lower the metabolic costs associated with higher temperatures. The impact of such changes on ecosystem dynamics and stability will depend on the resulting changes to community size-structure, but few studies have investigated how temperature affects the relative size of predators and their prey in natural systems. We utilise >3700 prey size measurements from ten Southern Ocean lanternfish species sampled across >10° of latitude to investigate how temperature influences predator-prey size relationships and size-selective feeding. As temperature increased, we show that predators became closer in size to their prey, which was primarily associated with a decline in predator size and an increase in the relative abundance of intermediate-sized prey. The potential implications of these changes include reduced top-down control of prey populations and a reduction in the diversity of predator-prey interactions. Both of these factors could reduce the stability of community dynamics and ecosystem resistance to perturbations under ocean warming.


Subject(s)
Body Size , Fishes , Oceans and Seas , Predatory Behavior , Temperature , Animals , Predatory Behavior/physiology , Body Size/physiology , Fishes/physiology , Food Chain , Ecosystem , Population Dynamics
2.
Sci Total Environ ; 929: 172536, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38643886

ABSTRACT

Oil and gas exploitation introduces toxic contaminants such as hydrocarbons and heavy metals to the surrounding sediment, resulting in deleterious impacts on marine benthic communities. This study combines benthic monitoring data over a 30-year period in the North Sea with dietary information on >1400 taxa to quantify the effects of active oil and gas platforms on benthic food webs using a multiple before-after control-impact experiment. Contamination from oil and gas platforms caused declines in benthic food web complexity, community abundance, and biodiversity. Fewer trophic interactions and increased connectance indicated that the community became dominated by generalists adapting to alternative resources, leading to simpler but more connected food webs in contaminated environments. Decreased mean body mass, shorter food chains, and the dominance of small detritivores such as Capitella capitata near to structures suggested a disproportionate loss of larger organisms from higher trophic levels. These patterns were associated with concentrations of hydrocarbons and heavy metals that exceed OSPAR's guideline thresholds of sediment toxicity. This study provides new evidence to better quantify and manage the environmental consequences of oil and gas exploitation at sea.


Subject(s)
Biodiversity , Environmental Monitoring , Food Chain , Invertebrates , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Aquatic Organisms , North Sea , Metals, Heavy/analysis , Oil and Gas Fields , Geologic Sediments/chemistry
3.
Nat Clim Chang ; 14(4): 387-392, 2024.
Article in English | MEDLINE | ID: mdl-38617202

ABSTRACT

Higher temperatures are expected to reduce species coexistence by increasing energetic demands. However, flexible foraging behaviour could balance this effect by allowing predators to target specific prey species to maximize their energy intake, according to principles of optimal foraging theory. Here we test these assumptions using a large dataset comprising 2,487 stomach contents from six fish species with different feeding strategies, sampled across environments with varying prey availability over 12 years in Kiel Bay (Baltic Sea). Our results show that foraging shifts from trait- to density-dependent prey selectivity in warmer and more productive environments. This behavioural change leads to lower consumption efficiency at higher temperature as fish select more abundant but less energetically rewarding prey, thereby undermining species persistence and biodiversity. By integrating this behaviour into dynamic food web models, our study reveals that flexible foraging leads to lower species coexistence and biodiversity in communities under global warming.

4.
Commun Biol ; 7(1): 316, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480906

ABSTRACT

Warming can have profound impacts on ecological communities. However, explorations of how differences in biogeography and productivity might reshape the effect of warming have been limited to theoretical or proxy-based approaches: for instance, studies of latitudinal temperature gradients are often conflated with other drivers (e.g., species richness). Here, we overcome these limitations by using local geothermal temperature gradients across multiple high-latitude stream ecosystems. Each suite of streams (6-11 warmed by 1-15°C above ambient) is set within one of five regions (37 streams total); because the heating comes from the bedrock and is not confounded by changes in chemistry, we can isolate the effect of temperature. We found a negative overall relationship between diatom and invertebrate species richness and temperature, but the strength of the relationship varied regionally, declining more strongly in regions with low terrestrial productivity. Total invertebrate biomass increased with temperature in all regions. The latter pattern combined with the former suggests that the increased biomass of tolerant species might compensate for the loss of sensitive species. Our results show that the impact of warming can be dependent on regional conditions, demonstrating that local variation should be included in future climate projections rather than simply assuming universal relationships.


Subject(s)
Ecosystem , Rivers , Animals , Biomass , Biodiversity , Invertebrates
5.
Sci Data ; 11(1): 236, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396055

ABSTRACT

The dataset presents a compilation of stomach contents from six demersal fish species from two functional groups inhabiting the Baltic Sea. It includes detailed information on prey identities, body masses, and biomasses recovered from both the fish's digestive systems and their surrounding environment. Environmental parameters, such as salinity and temperature levels, have been integrated to enrich this dataset. The juxtaposition of information on prey found in stomachs and in the environment provides an opportunity to quantify trophic interactions across different environmental contexts and investigate how fish foraging behaviour adapts to changes in their environment, such as an increase in temperature. The compilation of body mass and taxonomic information for all species allows approaching these new questions using either a taxonomic (based on species identity) or functional trait (based on body mass) approach.


Subject(s)
Fishes , Gastrointestinal Contents , Animals , Baltic States , Oceans and Seas
6.
Nat Commun ; 14(1): 8309, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097543

ABSTRACT

Metabolism, the biological processing of energy and materials, scales predictably with temperature and body size. Temperature effects on metabolism are normally studied via acute exposures, which overlooks the capacity for organisms to moderate their metabolism following chronic exposure to warming. Here, we conduct respirometry assays in situ and after transplanting salmonid fish among different streams to disentangle the effects of chronic and acute thermal exposure. We find a clear temperature dependence of metabolism for the transplants, but not the in-situ assays, indicating that chronic exposure to warming can attenuate salmonid thermal sensitivity. A bioenergetic model accurately captures the presence of fish in warmer streams when accounting for chronic exposure, whereas it incorrectly predicts their local extinction with warming when incorporating the acute temperature dependence of metabolism. This highlights the need to incorporate the potential for thermal acclimation or adaptation when forecasting the consequences of global warming on ecosystems.


Subject(s)
Salmonidae , Animals , Temperature , Ecosystem , Global Warming , Energy Metabolism , Acclimatization
7.
Nat Ecol Evol ; 7(12): 1983-1992, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37798434

ABSTRACT

Warming alters ecosystems through direct physiological effects on organisms and indirect effects via biotic interactions, but their relative impacts in the wild are unknown due to the difficulty in warming natural environments. Here we bridge this gap by embedding manipulative field experiments within a natural stream temperature gradient to test whether warming and apex fish predators have interactive effects on freshwater ecosystems. Fish exerted cascading effects on algal production and microbial decomposition via both green and brown pathways in the food web, but only under warming. Neither temperature nor the presence of fish altered food web structure alone, but connectance and mean trophic level declined as consumer species were lost when both drivers acted together. A mechanistic model indicates that this temperature-induced trophic cascade is determined primarily by altered interactions, which cautions against extrapolating the impacts of warming from reductionist approaches that do not consider the wider food web.


Subject(s)
Ecosystem , Food Chain , Animals , Temperature , Rivers
8.
Science ; 377(6609): 918-919, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36007050

ABSTRACT

Deep-learning tools can help to construct historical, modern-day, and future food webs.


Subject(s)
Food Chain , Animals , Deep Learning
9.
Nat Commun ; 13(1): 2161, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35443761

ABSTRACT

Organisms have the capacity to alter their physiological response to warming through acclimation or adaptation, but the consequence of this metabolic plasticity for energy flow through food webs is currently unknown, and a generalisable framework does not exist for modelling its ecosystem-level effects. Here, using temperature-controlled experiments on stream invertebrates from a natural thermal gradient, we show that the ability of organisms to raise their metabolic rate following chronic exposure to warming decreases with increasing body size. Chronic exposure to higher temperatures also increases the acute thermal sensitivity of whole-organismal metabolic rate, independent of body size. A mathematical model parameterised with these findings shows that metabolic plasticity could account for 60% higher ecosystem energy flux with just +2 °C of warming than a traditional model based on ecological metabolic theory. This could explain why long-term warming amplifies ecosystem respiration rates through time in recent mesocosm experiments, and highlights the need to embed metabolic plasticity in predictive models of global warming impacts on ecosystems.


Subject(s)
Ecosystem , Global Warming , Animals , Food Chain , Invertebrates , Temperature
10.
Glob Chang Biol ; 28(12): 3929-3943, 2022 06.
Article in English | MEDLINE | ID: mdl-35263490

ABSTRACT

The impacts of climate change on ecosystem structure and functioning are likely to be strongest at high latitudes due to the adaptation of biota to relatively low temperatures and nutrient levels. Soil warming is widely predicted to alter microbial, invertebrate, and plant communities, with cascading effects on ecosystem functioning, but this has largely been demonstrated over short-term (<10 year) warming studies. Using a natural soil temperature gradient spanning 10-35°C, we examine responses of soil organisms, decomposition, nitrogen cycling, and plant biomass production to long-term warming. We find that decomposer organisms are surprisingly resistant to chronic warming, with no responses of bacteria, fungi, or their grazers to temperature (fungivorous nematodes being an exception). Soil organic matter content instead drives spatial variation in microorganism abundances and mineral N availability. The few temperature effects that appear are more focused: root biomass and abundance of root-feeding nematodes decrease, and nitrification increases with increasing soil temperature. Our results suggest that transient responses of decomposers and soil functioning to warming may stabilize over time following acclimation and/or adaptation, highlighting the need for long-term, ecosystem-scale studies that incorporate evolutionary responses to soil warming.


Subject(s)
Ecosystem , Soil , Climate Change , Plants , Soil/chemistry , Soil Microbiology , Temperature
11.
Glob Chang Biol ; 27(16): 3765-3778, 2021 08.
Article in English | MEDLINE | ID: mdl-34009702

ABSTRACT

Global warming over the next century is likely to alter the energy demands of consumers and thus the strengths of their interactions with their resources. The subsequent cascading effects on population biomasses could have profound effects on food web stability. One key mechanism by which organisms can cope with a changing environment is phenotypic plasticity, such as acclimation to warmer conditions through reversible changes in their physiology. Here, we measured metabolic rates and functional responses in laboratory experiments for a widespread predator-prey pair of freshwater invertebrates, sampled from across a natural stream temperature gradient in Iceland (4-18℃). This enabled us to parameterize a Rosenzweig-MacArthur population dynamical model to study the effect of thermal acclimation on the persistence of the predator-prey pairs in response to warming. Acclimation to higher temperatures either had neutral effects or reduced the thermal sensitivity of both metabolic and feeding rates for the predator, increasing its energetic efficiency. This resulted in greater stability of population dynamics, as acclimation to higher temperatures increased the biomass of both predator and prey populations with warming. These findings indicate that phenotypic plasticity can act as a buffer against the impacts of environmental warming. As a consequence, predator-prey interactions between ectotherms may be less sensitive to future warming than previously expected, but this requires further investigation across a broader range of interacting species.


Subject(s)
Food Chain , Predatory Behavior , Acclimatization , Animals , Iceland , Population Dynamics , Temperature
12.
Glob Chang Biol ; 27(13): 3166-3178, 2021 07.
Article in English | MEDLINE | ID: mdl-33797829

ABSTRACT

Ecological communities are increasingly exposed to multiple interacting stressors. For example, warming directly affects the physiology of organisms, eutrophication stimulates the base of the food web, and harvesting larger organisms for human consumption dampens top-down control. These stressors often combine in the natural environment with unpredictable results. Bacterial communities in coastal ecosystems underpin marine food webs and provide many important ecosystem services (e.g. nutrient cycling and carbon fixation). Yet, how microbial communities will respond to a changing climate remains uncertain. Thus, we used marine mesocosms to examine the impacts of warming, nutrient enrichment, and altered top-predator population size structure (common shore crab) on coastal microbial biofilm communities in a crossed experimental design. Warming increased bacterial α-diversity (18% increase in species richness and 67% increase in evenness), but this was countered by a decrease in α-diversity with nutrient enrichment (14% and 21% decrease for species richness and evenness, respectively). Thus, we show some effects of these stressors could cancel each other out under climate change scenarios. Warming and top-predator population size structure both affected bacterial biofilm community composition, with warming increasing the abundance of bacteria capable of increased mineralization of dissolved and particulate organic matter, such as Flavobacteriia, Sphingobacteriia, and Cytophagia. However, the community shifts observed with warming depended on top-predator population size structure, with Sphingobacteriia increasing with smaller crabs and Cytophagia increasing with larger crabs. These changes could alter the balance between mineralization and carbon sequestration in coastal ecosystems, leading to a positive feedback loop between warming and CO2 production. Our results highlight the potential for warming to disrupt microbial communities and biogeochemical cycling in coastal ecosystems, and the importance of studying these effects in combination with other environmental stressors.


Subject(s)
Ecosystem , Microbiota , Bacteria , Biofilms , Climate Change , Food Chain , Humans
13.
J Anim Ecol ; 90(5): 1217-1227, 2021 05.
Article in English | MEDLINE | ID: mdl-33625727

ABSTRACT

Climate warming is predicted to have major impacts on the structure of terrestrial communities, particularly in high latitude ecosystems where growing seasons are short. Higher temperatures may dampen seasonal dynamics in community composition as a consequence of earlier snowmelt, with potentially cascading effects across all levels of biological organisation. Here, we examined changes in community assembly and structure along a natural soil temperature gradient in the Hengill geothermal valley, Iceland, during the summer of 2015. Sample collection over several time points within a season allowed us to assess whether temperature alters temporal variance in terrestrial communities and compositional turnover. We found that seasonal fluctuations in species richness, diversity and evenness were dampened as soil temperature increased, whereas invertebrate biomass varied more. Body mass was found to be a good predictor of species occurrence, with smaller species found at higher soil temperatures and emerging earlier in the season. Our results provide more in-depth understanding of the temporal nature of community and population-level responses to temperature, and indicate that climate warming will likely dampen the seasonal turnover of community structure that is characteristic of high latitude invertebrate communities.


Subject(s)
Ecosystem , Invertebrates , Animals , Biodiversity , Climate Change , Iceland , Seasons , Soil , Temperature
14.
Ecology ; 102(3): e03274, 2021 03.
Article in English | MEDLINE | ID: mdl-33368225

ABSTRACT

Biodiversity is typically considered as a one-dimensional metric (e.g., species richness), yet the consequences of species loss may be different depending on where extinctions occur in the food web. Here, I used a manipulative field experiment in a temperate subtidal marine system to explore the implications of diversity loss at multiple trophic levels for ecosystem functioning and food web structure. The four manipulated predators included the small painted goby and common prawn, which are also fed on by the larger black goby and shore crab. Antagonistic interactions between the manipulated predators (e.g., intraguild predation, intimidation, interference competition) limited their negative effects on the rest of the food web. Top-down control was so suppressed at the highest level of multitrophic diversity that the resulting food webs were as complex and productive as those containing no manipulated predators. Negative interactions between the predators weakened as multitrophic diversity decreased, however, resulting in stronger consumption of lower trophic levels and a simpler food web with lower rates of two key ecosystem processes: primary production and decomposition. These results show how indirect interactions between predators on multiple trophic levels help to promote the complexity and functioning of natural systems.


Subject(s)
Ecosystem , Food Chain , Animals , Biodiversity , Predatory Behavior
15.
Nat Commun ; 11(1): 3215, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32587246

ABSTRACT

Changes in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S). The biomass of smaller organisms (detritivores) was higher under more stable hydrological conditions. Conversely, the biomass of predators was highest when rainfall was uneven, resulting in top-heavy biomass pyramids. These results illustrate how extremes of precipitation, resulting in localized droughts or flooding, can erode the base of freshwater food webs, with negative implications for the stability of trophic dynamics.


Subject(s)
Bromelia , Ecosystem , Floods , Fresh Water , Animals , Biodiversity , Biomass , Climate Change , Droughts , Food Chain , Hydrology , South America
16.
Environ Pollut ; 255(Pt 2): 113259, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31563782

ABSTRACT

Microplastics are an emerging pollutant of high concern, with their prevalence in the environment linked to adverse impacts on aquatic organisms. However, our knowledge of these impacts on freshwater species is rudimentary, and there is almost no research directly testing how these effects can change under ongoing and future climate warming. Given the potential for multiple stressors to interact in nature, research on the combined impacts of microplastics and environmental temperature requires urgent attention. Thus, we experimentally manipulated environmentally realistic concentrations of microplastics and temperature to partition their independent and combined impacts on metabolic and feeding rates of a model freshwater detritivore. There was a significant increase in metabolic and feeding rates with increasing body mass and temperature, in line with metabolic and foraging theory. Experimental warming altered the effect of microplastics on metabolic rate, which increased with microplastic concentration at the lowest temperature, but decreased at the higher temperatures. The microplastics had no effect on the amount of litter consumed by the detritivores, therefore, did not result in altered feeding rates. These results show that the metabolism of important freshwater detritivores could be altered by short-term exposure to microplastics, with greater inhibition of metabolic rates at higher temperatures. The consequences of these metabolic changes may take longer to manifest than the duration of our experiments, requiring further investigation. Our results suggest little short-term impact of microplastics on litter breakdown by gammarid amphipods and highlight the importance of environmental context for a better understanding of microplastic pollution in freshwater ecosystems.


Subject(s)
Amphipoda/physiology , Environmental Monitoring , Global Warming , Microplastics/toxicity , Water Pollutants, Chemical/toxicity , Amphipoda/drug effects , Animals , Aquatic Organisms/physiology , Climate , Ecosystem , Environmental Pollution , Feeding Behavior , Fresh Water , Plastics , Temperature , Water Pollutants, Chemical/analysis
17.
J Anim Ecol ; 88(11): 1670-1683, 2019 11.
Article in English | MEDLINE | ID: mdl-31283002

ABSTRACT

Global warming is one of the greatest threats to the persistence of populations: increased metabolic demands should strengthen pairwise species interactions, which could destabilize food webs at the higher organizational levels. Quantifying the temperature dependence of consumer-resource interactions is thus essential for predicting ecological responses to warming. We explored feeding interactions between different predator-prey pairs in controlled-temperature chambers and in a system of naturally heated streams. We found consistent temperature dependence of attack rates across experimental settings, though the magnitude and activation energy of attack rate were specific to each predator, which varied in mobility and foraging mode. We used these parameters along with metabolic rate measurements to estimate energetic efficiency and population abundance with warming. Energetic efficiency accurately estimated field abundance of a mobile predator that struggled to meet its metabolic demands, but was a poor predictor for a sedentary predator that operated well below its energetic limits. Temperature effects on population abundance may thus be strongly dependent on whether organisms are regulated by their own energy intake or interspecific interactions. Given the widespread use of functional response parameters in ecological modelling, reconciling outcomes from laboratory and field studies increases the confidence and precision with which we can predict warming impacts on natural systems.


Subject(s)
Food Chain , Predatory Behavior , Animals , Global Warming , Temperature
18.
Nat Ecol Evol ; 3(6): 919-927, 2019 06.
Article in English | MEDLINE | ID: mdl-31110252

ABSTRACT

Predator-prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator-prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator-prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.


Subject(s)
Ecosystem , Food Chain , Animals , Body Size , Predatory Behavior , Vertebrates
19.
J Anim Ecol ; 88(6): 833-844, 2019 06.
Article in English | MEDLINE | ID: mdl-30873610

ABSTRACT

Ecological studies of global warming impacts have many constraints. Organisms are often exposed to higher temperatures for short periods of time, probably underestimating their ability to acclimate or adapt relative to slower but real rates of warming. Many studies also focus on a limited number of traits and miss the multifaceted effects that warming may have on organisms, from physiology to behaviour. Organisms exhibit different movement traits, some of which are primarily driven by metabolic processes and others by decision-making, which should influence the extent to which temperature affects them. We collected snails from streams that have been differentially heated by geothermal activity for decades to determine how long-term exposure to different temperatures affected their metabolism and movement. Additionally, we collected snails from a cold stream (5°C) and measured their metabolism and movement at higher temperatures (short-term exposure). We used respirometry to measure metabolic rates and automated in situ image-based tracking to quantify several movement traits from 5 to 21°C. Long-term exposure to higher temperatures resulted in a greater thermal sensitivity of metabolic rate compared to snails exposed for short durations, highlighting the need for caution when conducting acute temperature exposures in global warming research. Average speed, which is largely driven by metabolism, also increased more with temperature for long-term exposure compared to short-term exposure. Movement traits we interpret as more decision-based, such as time spent moving and trajectory shape, were less affected by temperature. Step length increased and step angle decreased at higher temperatures for both long- and short-term exposure, resulting in overall straighter trajectories. The power-law exponent of the step length distributions and fractal dimension of trajectories were independent of temperature, however, suggesting that snails retained the same movement strategy. The observed changes in snail movement at higher temperatures should lead to higher encounter rates and more efficient searching, providing a behavioural mechanism for stronger plant-herbivore interactions in warmer environments. Our research is among the first to show that temperature has contrasting effects on different movement traits, which may be determined by the metabolic contribution to those behaviours.


Subject(s)
Acclimatization , Hot Temperature , Animals , Global Warming , Snails , Temperature
20.
Curr Zool ; 64(2): 231-242, 2018 Apr.
Article in English | MEDLINE | ID: mdl-30402064

ABSTRACT

Environmental warming places physiological constraints on organisms, which may be mitigated by their feeding behavior. Theory predicts that consumers should increase their feeding selectivity for more energetically valuable resources in warmer environments to offset the disproportionate increase in metabolic demand relative to ingestion rate. This may also result in a change in feeding strategy or a shift towards a more specialist diet. This study used a natural warming experiment to investigate temperature effects on the feeding selectivity of three freshwater invertebrate grazers: the snail Radix balthica, the blackfly larva Simulium aureum, and the midgefly larva Eukiefferiella minor. Chesson's Selectivity Index was used to compare the proportional abundance of diatom species in the guts of each invertebrate species with corresponding rock biofilms sampled from streams of different temperature. The snails became more selective in warmer streams, choosing high profile epilithic diatoms over other guilds and feeding on a lower diversity of diatom species. The blackfly larvae appeared to switch from active collector gathering of sessile high profile diatoms to more passive filter feeding of motile diatoms in warmer streams. No changes in selectivity were observed for the midgefly larvae, whose diet was representative of resource availability in the environment. These results suggest that key primary consumers in freshwater streams, which constitute a major portion of invertebrate biomass, can change their feeding behavior in warmer waters in a range of different ways. These patterns could potentially lead to fundamental changes in the flow of energy through freshwater food webs.

SELECTION OF CITATIONS
SEARCH DETAIL
...