Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 294(30): 11458-11472, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31175155

ABSTRACT

Mast cells represent a heterogeneous cell population that is well-known for the production of heparin and the release of histamine upon activation. Serglycin is a proteoglycan that within mast cell α-granules is predominantly decorated with the glycosaminoglycans heparin or chondroitin sulfate (CS) and has a known role in granule homeostasis. Heparanase is a heparin-degrading enzyme, is present within the α-granules, and contributes to granule homeostasis, but an equivalent CS-degrading enzyme has not been reported previously. In this study, using several approaches, including epitope-specific antibodies, immunohistochemistry, and EM analyses, we demonstrate that human HMC-1 mast cells produce the CS-degrading enzymes hyaluronidase-1 (HYAL1) and HYAL4. We observed that treating the two model CS proteoglycans aggrecan and serglycin with HYAL1 and HYAL4 in vitro cleaves the CS chains into lower molecular weight forms with nonreducing end oligosaccharide structures similar to CS stub neoepitopes generated after digestion with the bacterial lyase chondroitinase ABC. We found that these structures are associated with both the CS linkage region and with structures more distal toward the nonreducing end of the CS chain. Furthermore, we noted that HYAL4 cleaves CS chains into lower molecular weight forms that range in length from tetra- to dodecasaccharides. These results provide first evidence that mast cells produce HYAL4 and that this enzyme may play a specific role in maintaining α-granule homeostasis in these cells by cleaving CS glycosaminoglycan chains attached to serglycin.


Subject(s)
Chondroitin Sulfates/metabolism , Hyaluronoglucosaminidase/biosynthesis , Mast Cells/enzymology , Proteoglycans/metabolism , Vesicular Transport Proteins/metabolism , Aggrecans/chemistry , Aggrecans/metabolism , Animals , Chondroitin Sulfates/chemistry , Humans , Molecular Weight , Proteoglycans/chemistry , Vesicular Transport Proteins/chemistry
2.
J Control Release ; 250: 48-61, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28189628

ABSTRACT

The repair of dermal wounds, particularly in the diabetic population, poses a significant healthcare burden. The impaired wound healing of diabetic wounds is attributed to low levels of endogenous growth factors, including vascular endothelial growth factor (VEGF), that normally stimulate multiple phases of wound healing. In this study, chitosan scaffolds were prepared via freeze drying and loaded with plasmid DNA encoding perlecan domain I and VEGF189 and analyzed in vivo for their ability to promote dermal wound healing. The plasmid DNA encoding perlecan domain I and VEGF189 loaded scaffolds promoted dermal wound healing in normal and diabetic rats. This treatment resulted in an increase in the number of blood vessels and sub-epithelial connective tissue matrix components within the wound beds compared to wounds treated with chitosan scaffolds containing control DNA or wounded controls. These results suggest that chitosan scaffolds containing plasmid DNA encoding VEGF189 and perlecan domain I have the potential to induce angiogenesis and wound healing.


Subject(s)
Chitosan/chemistry , DNA/administration & dosage , Heparan Sulfate Proteoglycans/genetics , Neovascularization, Physiologic , Vascular Endothelial Growth Factor A/genetics , Wound Healing , Animals , DNA/chemistry , Diabetes Complications/physiopathology , Drug Delivery Systems , Drug Liberation , Heparan Sulfate Proteoglycans/metabolism , Humans , Male , Mechanical Phenomena , Plasmids , Rats, Inbred Lew , Skin/blood supply , Skin/injuries , Tissue Scaffolds , Transgenes , Vascular Endothelial Growth Factor A/metabolism
3.
J Histochem Cytochem ; 64(2): 85-98, 2016 02.
Article in English | MEDLINE | ID: mdl-26586669

ABSTRACT

The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells.


Subject(s)
Chondroitin Sulfate Proteoglycans/metabolism , Chondroitin Sulfates/immunology , Mast Cells/cytology , Mast Cells/immunology , Animals , Chondroitin Sulfate Proteoglycans/analysis , Chondroitin Sulfates/analysis , Epitope Mapping , Mast Cells/chemistry , Rats , Staining and Labeling
4.
Biomaterials ; 35(5): 1462-77, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24246646

ABSTRACT

Implantation of a foreign material almost certainly results in the formation of a fibrous capsule around the implant however, mechanistic events leading to its formation are largely unexplored. Mast cells are an inflammatory cell type known to play a role in the response to material implants, through the release of pro-inflammatory proteases and cytokines from their α-granules following activation. This study examined the in vivo and in vitro response of mast cells to chitosan, through detection of markers known to be produced by mast cells or involved with the inflammatory response. Mast cells, identified as Leder stained positive cells, were shown to be present in response to material implants. Additionally, the mast cell receptor, c-kit, along with collagen, serglycin, perlecan and chondroitin sulphate were detected within the fibrous capsules, where distribution varied between material implants. In conjunction, rat mast cells (RBL-2H3) were shown to be activated following exposure to chitosan as indicated by the release of ß-hexosaminidase. Proteoglycan and glycosaminoglycans produced by the cells showed similar expression and localisation when in contact with chitosan to when chemically activated. These data support the role that mast cells play in the inflammatory host response to chitosan implants, where mediators released from their α-granules impact on the formation of a fibrous capsule by supporting the production and organisation of collagen fibres.


Subject(s)
Chitosan/administration & dosage , Mast Cells/cytology , Proteoglycans/metabolism , Animals , Cell Line , Chitosan/pharmacology , Female , Mast Cells/drug effects , Mast Cells/metabolism , Rats , Rats, Sprague-Dawley
5.
BMC Biotechnol ; 12: 60, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22967000

ABSTRACT

BACKGROUND: Many growth factors, such as bone morphogenetic protein (BMP)-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS) glycosaminoglycans (GAGs), which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS), regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. RESULTS: Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1) expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™). CONCLUSIONS: A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid significantly improved the dose-effectiveness of BMP-2 osteogenic activity for in vivo de novo bone generation when delivered together on a scaffold as a single-phase. The use of HS/CS PGs may be useful to augment GF therapeutics, and a plasmid-based approach has been shown here to be highly effective.


Subject(s)
Bone Morphogenetic Protein 2/metabolism , Heparan Sulfate Proteoglycans/chemistry , Osteoblasts/cytology , Osteogenesis , Proteoglycans/metabolism , 3T3 Cells , Animals , Bone Morphogenetic Protein 2/genetics , HEK293 Cells , Heparan Sulfate Proteoglycans/genetics , Heparan Sulfate Proteoglycans/metabolism , Humans , Male , Mice , Osteoblasts/metabolism , Protein Structure, Tertiary , Rats , Rats, Inbred Lew
SELECTION OF CITATIONS
SEARCH DETAIL
...