Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1376653, 2024.
Article in English | MEDLINE | ID: mdl-38680917

ABSTRACT

The exchange of small molecules between the cell and the environment happens through transporter proteins. Besides nutrients and native metabolic products, xenobiotic molecules are also transported, however it is not well understood which transporters are involved. In this study, by combining exo-metabolome screening in yeast with transporter characterization in Xenopus oocytes, we mapped the activity of 30 yeast transporters toward six small non-toxic substrates. Firstly, using LC-MS, we determined 385 compounds from a chemical library that were imported and exported by S. cerevisiae. Of the 385 compounds transported by yeast, we selected six compounds (viz. sn-glycero-3-phosphocholine, 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, acrylic acid, 2-benzoxazolol) for characterization against 30 S. cerevisiae xenobiotic transport proteins expressed in Xenopus oocytes. The compounds were selected to represent a diverse set of chemicals with a broad interest in applied microbiology. Twenty transporters showed activity toward one or more of the compounds. The tested transporter proteins were mostly promiscuous in equilibrative transport (i.e., facilitated diffusion). The compounds 2,5-furandicarboxylic acid, 2-methylpyrazine, cefadroxil, and sn-glycero-3-phosphocholine were transported equilibratively by transporters that could transport up to three of the compounds. In contrast, the compounds acrylic acid and 2-benzoxazolol, were strictly transported by dedicated transporters. The prevalence of promiscuous equilibrative transporters of non-native substrates has significant implications for strain development in biotechnology and offers an explanation as to why transporter engineering has been a challenge in metabolic engineering. The method described here can be generally applied to study the transport of other small non-toxic molecules. The yeast transporter library is available at AddGene (ID 79999).

2.
Microbiology (Reading) ; 167(2)2021 02.
Article in English | MEDLINE | ID: mdl-33406033

ABSTRACT

Our previous work demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type Escherichia coli MG1655 were differentially transported in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarize the desirable properties of such stains, and here survey 143 candidate dyes. We eventually triage them (on the basis of signal, accumulation levels and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the 'Keio' strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation of the dyes. Even the 'wild-type' MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (yhjV, yihN and tolC). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and informative approach to the assessment of microbial physiology and phenotyping of membrane transporter function.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Fluorescent Dyes/metabolism , Membrane Transport Proteins/metabolism , Biological Transport/drug effects , Chlorpromazine/pharmacology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Gene Knockout Techniques , Hydrogen-Ion Concentration , Ligands , Membrane Transport Proteins/genetics
3.
Mar Drugs ; 18(11)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238416

ABSTRACT

It is known that at least some fluorophores can act as 'surrogate' substrates for solute carriers (SLCs) involved in pharmaceutical drug uptake, and this promiscuity is taken to reflect at least a certain structural similarity. As part of a comprehensive study seeking the 'natural' substrates of 'orphan' transporters that also serve to take up pharmaceutical drugs into cells, we have noted that many drugs bear structural similarities to natural products. A cursory inspection of common fluorophores indicates that they too are surprisingly 'drug-like', and they also enter at least some cells. Some are also known to be substrates of efflux transporters. Consequently, we sought to assess the structural similarity of common fluorophores to marketed drugs, endogenous mammalian metabolites, and natural products. We used a set of some 150 fluorophores along with standard fingerprinting methods and the Tanimoto similarity metric. Results: The great majority of fluorophores tested exhibited significant similarity (Tanimoto similarity > 0.75) to at least one drug, as judged via descriptor properties (especially their aromaticity, for identifiable reasons that we explain), by molecular fingerprints, by visual inspection, and via the "quantitative estimate of drug likeness" technique. It is concluded that this set of fluorophores does overlap with a significant part of both the drug space and natural products space. Consequently, fluorophores do indeed offer a much wider opportunity than had possibly been realised to be used as surrogate uptake molecules in the competitive or trans-stimulation assay of membrane transporter activities.


Subject(s)
Biological Products/chemistry , Fluorescent Dyes/chemistry , Pharmaceutical Preparations/chemistry , Animals , Biological Products/metabolism , Biological Transport , Cheminformatics , Fluorescent Dyes/metabolism , Humans , Membrane Transport Proteins/metabolism , Molecular Structure , Pharmaceutical Preparations/metabolism , Secondary Metabolism , Structure-Activity Relationship
4.
Metabolomics ; 16(10): 107, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33026554

ABSTRACT

INTRODUCTION: It is widely but erroneously believed that drugs get into cells by passing through the phospholipid bilayer portion of the plasma and other membranes. Much evidence shows, however, that this is not the case, and that drugs cross biomembranes by hitchhiking on transporters for other natural molecules to which these drugs are structurally similar. Untargeted metabolomics can provide a method for determining the differential uptake of such metabolites. OBJECTIVES: Blood serum contains many thousands of molecules and provides a convenient source of biologically relevant metabolites. Our objective was to detect and identify metabolites present in serum, but to also establish a method capable of measure their uptake and secretion by different cell lines. METHODS: We develop an untargeted LC-MS/MS method to detect a broad range of compounds present in human serum. We apply this to the analysis of the time course of the uptake and secretion of metabolites in serum by several human cell lines, by analysing changes in the serum that represents the extracellular phase (the 'exometabolome' or metabolic footprint). RESULTS: Our method measures some 4000-5000 metabolic features in both positive and negative electrospray ionisation modes. We show that the metabolic footprints of different cell lines differ greatly from each other. CONCLUSION: Our new, 15-min untargeted metabolome method allows for the robust and convenient measurement of differences in the uptake of serum compounds by cell lines following incubation in serum. This will enable future research to study these differences in multiple cell lines that will relate this to transporter expression, thereby advancing our knowledge of transporter substrates, both natural and xenobiotic compounds.


Subject(s)
Metabolomics/methods , Plasma/chemistry , Animals , Cell Line/metabolism , Cell Line, Tumor/metabolism , Cell Membrane/metabolism , Chromatography, Liquid/methods , Drug Carriers/metabolism , Drug Delivery Systems/methods , Humans , Mammals/metabolism , Membrane Proteins/metabolism , Metabolome , Phospholipids/metabolism , Tandem Mass Spectrometry/methods
5.
Molecules ; 25(15)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751155

ABSTRACT

Molecular similarity is an elusive but core "unsupervised" cheminformatics concept, yet different "fingerprint" encodings of molecular structures return very different similarity values, even when using the same similarity metric. Each encoding may be of value when applied to other problems with objective or target functions, implying that a priori none are "better" than the others, nor than encoding-free metrics such as maximum common substructure (MCSS). We here introduce a novel approach to molecular similarity, in the form of a variational autoencoder (VAE). This learns the joint distribution p(z|x) where z is a latent vector and x are the (same) input/output data. It takes the form of a "bowtie"-shaped artificial neural network. In the middle is a "bottleneck layer" or latent vector in which inputs are transformed into, and represented as, a vector of numbers (encoding), with a reverse process (decoding) seeking to return the SMILES string that was the input. We train a VAE on over six million druglike molecules and natural products (including over one million in the final holdout set). The VAE vector distances provide a rapid and novel metric for molecular similarity that is both easily and rapidly calculated. We describe the method and its application to a typical similarity problem in cheminformatics.


Subject(s)
Cheminformatics/methods , Models, Molecular , Molecular Structure , Algorithms , Drug Discovery
6.
Sci Rep ; 9(1): 17960, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31784565

ABSTRACT

We recently introduced the Gini coefficient (GC) for assessing the expression variation of a particular gene in a dataset, as a means of selecting improved reference genes over the cohort ('housekeeping genes') typically used for normalisation in expression profiling studies. Those genes (transcripts) that we determined to be useable as reference genes differed greatly from previous suggestions based on hypothesis-driven approaches. A limitation of this initial study is that a single (albeit large) dataset was employed for both tissues and cell lines. We here extend this analysis to encompass seven other large datasets. Although their absolute values differ a little, the Gini values and median expression levels of the various genes are well correlated with each other between the various cell line datasets, implying that our original choice of the more ubiquitously expressed low-Gini-coefficient genes was indeed sound. In tissues, the Gini values and median expression levels of genes showed a greater variation, with the GC of genes changing with the number and types of tissues in the data sets. In all data sets, regardless of whether this was derived from tissues or cell lines, we also show that the GC is a robust measure of gene expression stability. Using the GC as a measure of expression stability we illustrate its utility to find tissue- and cell line-optimised housekeeping genes without any prior bias, that again include only a small number of previously reported housekeeping genes. We also independently confirmed this experimentally using RT-qPCR with 40 candidate GC genes in a panel of 10 cell lines. These were termed the Gini Genes. In many cases, the variation in the expression levels of classical reference genes is really quite huge (e.g. 44 fold for GAPDH in one data set), suggesting that the cure (of using them as normalising genes) may in some cases be worse than the disease (of not doing so). We recommend the present data-driven approach for the selection of reference genes by using the easy-to-calculate and robust GC.


Subject(s)
Gene Expression Profiling , Transcriptome , Algorithms , Cell Line , Gene Expression , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Genes, Essential , Humans , Reference Standards
7.
Pharm Front ; 1(1): e190005, 2019.
Article in English | MEDLINE | ID: mdl-31485581

ABSTRACT

Natural products space includes at least 200,000 compounds and the structures of most of these compounds are available in digital format. Previous analyses showed (i) that although they were capable of taking up synthetic pharmaceutical drugs, such exogenous molecules were likely the chief 'natural' substrates in the evolution of the transporters used to gain cellular entry by pharmaceutical drugs, and (ii) that a relatively simple but rapid clustering algorithm could produce clusters from which individual elements might serve to form a representative library covering natural products space. This exploited the fact that the larger clusters were likely to be formed early in evolution (and hence to have been accompanied by suitable transporters), so that very small clusters, including singletons, could be ignored. In the latter work, we assumed that the molecule chosen might be that in the middle of the cluster. However, this ignored two other criteria, namely the commercial availability and the financial cost of the individual elements of these clusters. We here develop a small representative library in which we to seek to satisfy the somewhat competing criteria of coverage ('representativeness'), availability and cost. It is intended that the library chosen might serve as a testbed of molecules that may or may not be substrates for known or orphan drug transporters. A supplementary spreadsheet provides details, and their availability via a particular supplier.

8.
Cell Syst ; 6(2): 230-244.e1, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29428416

ABSTRACT

The expression levels of SLC or ABC membrane transporter transcripts typically differ 100- to 10,000-fold between different tissues. The Gini coefficient characterizes such inequalities and here is used to describe the distribution of the expression of each transporter among different human tissues and cell lines. Many transporters exhibit extremely high Gini coefficients even for common substrates, indicating considerable specialization consistent with divergent evolution. The expression profiles of SLC transporters in different cell lines behave similarly, although Gini coefficients for ABC transporters tend to be larger in cell lines than in tissues, implying selection. Transporter genes are significantly more heterogeneously expressed than the members of most non-transporter gene classes. Transcripts with the stablest expression have a low Gini index and often differ significantly from the "housekeeping" genes commonly used for normalization in transcriptomics/qPCR studies. PCBP1 has a low Gini coefficient, is reasonably expressed, and is an excellent novel reference gene. The approach, referred to as GeneGini, provides rapid and simple characterization of expression-profile distributions and improved normalization of genome-wide expression-profiling data.


Subject(s)
Gene Expression Profiling/methods , Sequence Analysis/methods , ATP-Binding Cassette Transporters/genetics , Algorithms , Computational Biology/methods , Databases, Genetic , Genes, Essential/genetics , Genes, Regulator/genetics , Humans , Membrane Transport Proteins/genetics , Software , Transcriptome/genetics
9.
Biotechnol J ; 13(1)2018 Jan.
Article in English | MEDLINE | ID: mdl-29168302

ABSTRACT

Armed with the digital availability of two natural products libraries, amounting to some 195 885 molecular entities, we ask the question of how we can best sample from them to maximize their "representativeness" in smaller and more usable libraries of 96, 384, 1152, and 1920 molecules. The term "representativeness" is intended to include diversity, but for numerical reasons (and the likelihood of being able to perform a QSAR) it is necessary to focus on areas of chemical space that are more highly populated. Encoding chemical structures as fingerprints using the RDKit "patterned" algorithm, we first assess the granularity of the natural products space using a simple clustering algorithm, showing that there are major regions of "denseness" but also a great many very sparsely populated areas. We then apply a "hybrid" hierarchical K-means clustering algorithm to the data to produce more statistically robust clusters from which representative and appropriate numbers of samples may be chosen. There is necessarily again a trade-off between cluster size and cluster number, but within these constraints, libraries containing 384 or 1152 molecules can be found that come from clusters that represent some 18 and 30% of the whole chemical space, with cluster sizes of, respectively, 50 and 27 or above, just about sufficient to perform a QSAR. By using the online availability of molecules via the Molport system (www.molport.com), we are also able to construct (and, for the first time, provide the contents of) a small virtual library of available molecules that provided effective coverage of the chemical space described. Consistent with this, the average molecular similarities of the contents of the libraries developed is considerably smaller than is that of the original libraries. The suggested libraries may have use in molecular or phenotypic screening, including for determining possible transporter substrates.


Subject(s)
Biological Products/chemistry , Molecular Structure , Small Molecule Libraries/chemistry , Algorithms , Biological Products/classification , Drug Discovery , Models, Molecular , Quantitative Structure-Activity Relationship , Small Molecule Libraries/classification , Small Molecule Libraries/therapeutic use
10.
Front Pharmacol ; 8: 155, 2017.
Article in English | MEDLINE | ID: mdl-28396636

ABSTRACT

The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a "binary weapon" strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three "hits." The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment "hits" served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.

11.
J Cheminform ; 9: 18, 2017.
Article in English | MEDLINE | ID: mdl-28316656

ABSTRACT

In previous work, we have assessed the structural similarities between marketed drugs ('drugs') and endogenous natural human metabolites ('metabolites' or 'endogenites'), using 'fingerprint' methods in common use, and the Tanimoto and Tversky similarity metrics, finding that the fingerprint encoding used had a dramatic effect on the apparent similarities observed. By contrast, the maximal common substructure (MCS), when the means of determining it is fixed, is a means of determining similarities that is largely independent of the fingerprints, and also has a clear chemical meaning. We here explored the utility of the MCS and metrics derived therefrom. In many cases, a shared scaffold helps cluster drugs and endogenites, and gives insight into enzymes (in particular transporters) that they both share. Tanimoto and Tversky similarities based on the MCS tend to be smaller than those based on the MACCS fingerprint-type encoding, though the converse is also true for a significant fraction of the comparisons. While no single molecular descriptor can account for these differences, a machine learning-based analysis of the nature of the differences (MACCS_Tanimoto vs MCS_Tversky) shows that they are indeed deterministic, although the features that are used in the model to account for this vary greatly with each individual drug. The extent of its utility and interpretability vary with the drug of interest, implying that while MCS is neither 'better' nor 'worse' for every drug-endogenite comparison, it is sufficiently different to be of value. The overall conclusion is thus that the use of the MCS provides an additional and valuable strategy for understanding the structural basis for similarities between synthetic, marketed drugs and natural intermediary metabolites.

12.
Front Pharmacol ; 7: 266, 2016.
Article in English | MEDLINE | ID: mdl-27597830

ABSTRACT

BACKGROUND: Previous studies compared the molecular similarity of marketed drugs and endogenous human metabolites (endogenites), using a series of fingerprint-type encodings, variously ranked and clustered using the Tanimoto (Jaccard) similarity coefficient (TS). Because this gives equal weight to all parts of the encoding (thence to different substructures in the molecule) it may not be optimal, since in many cases not all parts of the molecule will bind to their macromolecular targets. Unsupervised methods cannot alone uncover this. We here explore the kinds of differences that may be observed when the TS is replaced-in a manner more equivalent to semi-supervised learning-by variants of the asymmetric Tversky (TV) similarity, that includes α and ß parameters. RESULTS: Dramatic differences are observed in (i) the drug-endogenite similarity heatmaps, (ii) the cumulative "greatest similarity" curves, and (iii) the fraction of drugs with a Tversky similarity to a metabolite exceeding a given value when the Tversky α and ß parameters are varied from their Tanimoto values. The same is true when the sum of the α and ß parameters is varied. A clear trend toward increased endogenite-likeness of marketed drugs is observed when α or ß adopt values nearer the extremes of their range, and when their sum is smaller. The kinds of molecules exhibiting the greatest similarity to two interrogating drug molecules (chlorpromazine and clozapine) also vary in both nature and the values of their similarity as α and ß are varied. The same is true for the converse, when drugs are interrogated with an endogenite. The fraction of drugs with a Tversky similarity to a molecule in a library exceeding a given value depends on the contents of that library, and α and ß may be "tuned" accordingly, in a semi-supervised manner. At some values of α and ß drug discovery library candidates or natural products can "look" much more like (i.e., have a numerical similarity much closer to) drugs than do even endogenites. CONCLUSIONS: Overall, the Tversky similarity metrics provide a more useful range of examples of molecular similarity than does the simpler Tanimoto similarity, and help to draw attention to molecular similarities that would not be recognized if Tanimoto alone were used. Hence, the Tversky similarity metrics are likely to be of significant value in many general problems in cheminformatics.

13.
PeerJ ; 3: e1405, 2015.
Article in English | MEDLINE | ID: mdl-26618081

ABSTRACT

We bring together fifteen, nonredundant, tabulated collections (amounting to 696 separate measurements) of the apparent permeability (P app) of Caco-2 cells to marketed drugs. While in some cases there are some significant interlaboratory disparities, most are quite minor. Most drugs are not especially permeable through Caco-2 cells, with the median P app value being some 16 ⋅ 10(-6) cm s(-1). This value is considerably lower than those (1,310 and 230 ⋅ 10(-6) cm s(-1)) recently used in some simulations that purported to show that P app values were too great to be transporter-mediated only. While these values are outliers, all values, and especially the comparatively low values normally observed, are entirely consistent with transporter-only mediated uptake, with no need to invoke phospholipid bilayer diffusion. The apparent permeability of Caco-2 cells to marketed drugs is poorly correlated with either simple biophysical properties, the extent of molecular similarity to endogenous metabolites (endogenites), or any specific substructural properties. In particular, the octanol:water partition coefficient, logP, shows negligible correlation with Caco-2 permeability. The data are best explained on the basis that most drugs enter (and exit) Caco-2 cells via a multiplicity of transporters of comparatively weak specificity.

14.
Metabolomics ; 11(6): 1587-1597, 2015.
Article in English | MEDLINE | ID: mdl-26491418

ABSTRACT

Metabolomics has become a crucial phenotyping technique in a range of research fields including medicine, the life sciences, biotechnology and the environmental sciences. This necessitates the transfer of experimental information between research groups, as well as potentially to publishers and funders. After the initial efforts of the metabolomics standards initiative, minimum reporting standards were proposed which included the concepts for metabolomics databases. Built by the community, standards and infrastructure for metabolomics are still needed to allow storage, exchange, comparison and re-utilization of metabolomics data. The Framework Programme 7 EU Initiative 'coordination of standards in metabolomics' (COSMOS) is developing a robust data infrastructure and exchange standards for metabolomics data and metadata. This is to support workflows for a broad range of metabolomics applications within the European metabolomics community and the wider metabolomics and biomedical communities' participation. Here we announce our concepts and efforts asking for re-engagement of the metabolomics community, academics and industry, journal publishers, software and hardware vendors, as well as those interested in standardisation worldwide (addressing missing metabolomics ontologies, complex-metadata capturing and XML based open source data exchange format), to join and work towards updating and implementing metabolomics standards.

15.
Front Pharmacol ; 6: 105, 2015.
Article in English | MEDLINE | ID: mdl-26029108

ABSTRACT

BACKGROUND: A recent comparison showed the extensive similarities between the structural properties of metabolites in the reconstructed human metabolic network ("endogenites") and those of successful, marketed drugs ("drugs"). RESULTS: Clustering indicated the related but differential population of chemical space by endogenites and drugs. Differences between the drug-endogenite similarities resulting from various encodings and judged by Tanimoto similarity could be related simply to the fraction of the bitstrings set to 1. By extracting drug/endogenite substructures, we develop a novel family of fingerprints, the Drug Endogenite Substructure (DES) encodings, based on the ranked frequency of the various substructures. These provide a natural assessment of drug-endogenite likeness, and may be used as descriptors with which to derive quantitative structure-activity relationships (QSARs). CONCLUSIONS: "Drug-endogenite likeness" seems to have utility, and leads to a simple, novel and interpretable substructure-based molecular encoding for cheminformatics.

16.
Metabolomics ; 11(2): 323-339, 2015.
Article in English | MEDLINE | ID: mdl-25750602

ABSTRACT

We exploit the recent availability of a community reconstruction of the human metabolic network ('Recon2') to study how close in structural terms are marketed drugs to the nearest known metabolite(s) that Recon2 contains. While other encodings using different kinds of chemical fingerprints give greater differences, we find using the 166 Public MDL Molecular Access (MACCS) keys that 90 % of marketed drugs have a Tanimoto similarity of more than 0.5 to the (structurally) 'nearest' human metabolite. This suggests a 'rule of 0.5' mnemonic for assessing the metabolite-like properties that characterise successful, marketed drugs. Multiobjective clustering leads to a similar conclusion, while artificial (synthetic) structures are seen to be less human-metabolite-like. This 'rule of 0.5' may have considerable predictive value in chemical biology and drug discovery, and may represent a powerful filter for decision making processes.

17.
Metabolomics ; 11: 9-26, 2015.
Article in English | MEDLINE | ID: mdl-25598764

ABSTRACT

Phenotyping of 1,200 'healthy' adults from the UK has been performed through the investigation of diverse classes of hydrophilic and lipophilic metabolites present in serum by applying a series of chromatography-mass spectrometry platforms. These data were made robust to instrumental drift by numerical correction; this was prerequisite to allow detection of subtle metabolic differences. The variation in observed metabolite relative concentrations between the 1,200 subjects ranged from less than 5 % to more than 200 %. Variations in metabolites could be related to differences in gender, age, BMI, blood pressure, and smoking. Investigations suggest that a sample size of 600 subjects is both necessary and sufficient for robust analysis of these data. Overall, this is a large scale and non-targeted chromatographic MS-based metabolomics study, using samples from over 1,000 individuals, to provide a comprehensive measurement of their serum metabolomes. This work provides an important baseline or reference dataset for understanding the 'normal' relative concentrations and variation in the human serum metabolome. These may be related to our increasing knowledge of the human metabolic network map. Information on the Husermet study is available at http://www.husermet.org/. Importantly, all of the data are made freely available at MetaboLights (http://www.ebi.ac.uk/metabolights/).

18.
Analyst ; 138(14): 3871-84, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23722248

ABSTRACT

The discovery of the Raman effect in 1928 not only aided fundamental understanding about the quantum nature of light and matter but also opened up a completely novel area of optics and spectroscopic research that is accelerating at a greater rate during the last decade than at any time since its inception. This introductory overview focuses on some of the most recent developments within this exciting field and how this has enabled and enhanced disease diagnosis and biomedical applications. We highlight a small number of stimulating high-impact studies in imaging, endoscopy, stem cell research, and other recent developments such as spatially offset Raman scattering amongst others. We hope this stimulates further interest in this already exciting field, by 'illuminating' some of the current research being undertaken by the latest in a very long line of dedicated experimentalists interested in the properties and potential beneficial applications of light.


Subject(s)
Biomedical Research , Diagnostic Imaging , Disease , Spectrum Analysis, Raman/methods , Animals , Humans
19.
PLoS One ; 7(11): e48862, 2012.
Article in English | MEDLINE | ID: mdl-23185279

ABSTRACT

Comparatively few studies have addressed directly the question of quantifying the benefits to be had from using molecular genetic markers in experimental breeding programmes (e.g. for improved crops and livestock), nor the question of which organisms should be mated with each other to best effect. We argue that this requires in silico modelling, an approach for which there is a large literature in the field of evolutionary computation (EC), but which has not really been applied in this way to experimental breeding programmes. EC seeks to optimise measurable outcomes (phenotypic fitnesses) by optimising in silico the mutation, recombination and selection regimes that are used. We review some of the approaches from EC, and compare experimentally, using a biologically relevant in silico landscape, some algorithms that have knowledge of where they are in the (genotypic) search space (G-algorithms) with some (albeit well-tuned ones) that do not (F-algorithms). For the present kinds of landscapes, F- and G-algorithms were broadly comparable in quality and effectiveness, although we recognise that the G-algorithms were not equipped with any 'prior knowledge' of epistatic pathway interactions. This use of algorithms based on machine learning has important implications for the optimisation of experimental breeding programmes in the post-genomic era when we shall potentially have access to the full genome sequence of every organism in a breeding population. The non-proprietary code that we have used is made freely available (via Supplementary information).


Subject(s)
Algorithms , Computational Biology/methods , DNA Shuffling/methods , Evolution, Molecular , Genome/genetics , Genomics , Knowledge
20.
Anal Chem ; 81(4): 1357-64, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19170513

ABSTRACT

A method for performing untargeted metabolomic analysis of human serum has been developed based on protein precipitation followed by Ultra Performance Liquid Chromatography and Time-of-Flight mass spectrometry (UPLC-TOF-MS). This method was specifically designed to fulfill the requirements of a long-term metabolomic study, spanning more than 3 years, and it was subsequently thoroughly evaluated for robustness and repeatability. We describe here the observed drift in instrumental performance over time and its improvement with adjustment of the length of analytical block. The optimal setup for our purpose was further validated against a set of serum samples from 30 healthy individuals. We also assessed the reproducibility of chromatographic columns with the same chemistry of stationary phase from the same manufacturer but from different production batches. The results have allowed the authors to prepare SOPs for "fit for purpose" long-term UPLC-MS metabolomic studies, such as are being employed in the HUSERMET project. This method allows the acquisition of data and subsequent comparison of data collected across many months or years.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics/methods , Serum/metabolism , Humans , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...