Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 65(2): 300-305, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38164615

ABSTRACT

This study aimed to evaluate (R)-[18F]YH134 as a novel PET tracer for imaging monoacylglycerol lipase (MAGL). Considering the ubiquitous expression of MAGL throughout the whole body, the impact of various MAGL inhibitors on (R)-[18F]YH134 brain uptake and its application in brain-periphery crosstalk were explored. Methods: MAGL knockout and wild-type mice were used to evaluate (R)-[18F]YH134 in in vitro autoradiography and PET experiments. To explore the impact of peripheral MAGL occupancy on (R)-[18F]YH134 brain uptake, PET kinetics with an arterial input function were studied in male Wistar rats under baseline and blocking conditions. Results: In in vitro autoradiography, (R)-[18F]YH134 revealed a heterogeneous distribution pattern with high binding to MAGL-rich brain regions in wild-type mouse brain slices, whereas the radioactive signal was negligible in MAGL knockout mouse brain slices. The in vivo brain PET images of (R)-[18F]YH134 in wild-type and MAGL knockout mice demonstrated its high specificity and selectivity in mouse brain. A Logan plot with plasma input function was applied to estimate the distribution volume (V T) of (R)-[18F]YH134. V T was significantly reduced by a brain-penetrant MAGL inhibitor but was unchanged by a peripherally restricted MAGL inhibitor. The MAGL target occupancy in the periphery was estimated using (R)-[18F]YH134 PET imaging data from the brain. Conclusion: (R)-[18F]YH134 is a highly specific and selective PET tracer with favorable kinetic properties for imaging MAGL in rodent brain. Our results showed that blocking of the peripheral target influences brain uptake but not the V T of (R)-[18F]YH134. (R)-[18F]YH134 can be used for estimating the dose of MAGL inhibitor at half-maximal peripheral target occupancy.


Subject(s)
Monoacylglycerol Lipases , Neuroimaging , Rats , Mice , Male , Animals , Monoacylglycerol Lipases/metabolism , Rats, Wistar , Neuroimaging/methods , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Mice, Knockout , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
2.
Nucl Med Biol ; 108-109: 24-32, 2022.
Article in English | MEDLINE | ID: mdl-35248850

ABSTRACT

Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays an important role in the endocannabinoid degradation in the brain. It has recently emerged as a promising therapeutic target in the treatment of neuroinflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Development of MAGL-specific radioligands for non-invasive imaging by positron-emission tomography (PET) would deepen our knowledge on the relevant pathological changes in diseased states and accelerate drug discovery. In this study, we report the selection and synthesis of two morpholine-3-one derivatives as potential reversible MAGL PET tracer candidates based on their multiparameter optimization scores. Both compounds ([11C]1, [11C]2) were radiolabeled by direct [11C]CO2 fixation and the in vitro autoradiographic studies demonstrated their specificity and selectivity towards MAGL. Dynamic PET imaging using MAGL knockout and wild-type mice confirmed the in vivo specificity of [11C]2. Our preliminary results indicate that morpholine-3-one derivative [11C]2 ([11C]RO7279991) binds to MAGL in vivo, and this molecular scaffold could serve as an alternative lead structure to image MAGL in the central nervous system.


Subject(s)
Monoacylglycerol Lipases , Positron-Emission Tomography , Animals , Brain/diagnostic imaging , Brain/metabolism , Endocannabinoids/metabolism , Enzyme Inhibitors/metabolism , Mice , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/metabolism , Morpholines/metabolism , Positron-Emission Tomography/methods
3.
Angew Chem Int Ed Engl ; 54(18): 5451-5, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25706658

ABSTRACT

A sequential CH functionalization strategy for the synthesis of the marine alkaloid dictyodendrin B is reported. Our synthesis begins from commercially available 4-bromoindole and involves six direct functionalizations around the heteroarene core as part of a gram-scale strategy towards the natural product.


Subject(s)
Carbazoles/chemistry , Carbazoles/chemical synthesis , Pyrroles/chemistry , Pyrroles/chemical synthesis , Chemistry Techniques, Synthetic , Hydrogen Bonding , Indoles/chemistry , Molecular Structure
4.
J Med Chem ; 57(4): 1616-20, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24472070

ABSTRACT

The bioavailability of aromatic azaheterocyclic drugs can be affected by the activity of aldehyde oxidase (AO). Susceptibility to AO metabolism is difficult to predict computationally and can be complicated in vivo by differences between species. Here we report the use of bis(((difluoromethyl)sulfinyl)oxy)zinc (DFMS) as a source of CF2H radical for a rapid and inexpensive chemical "litmus test" for the early identification of heteroaromatic drug candidates that have a high probability of metabolism by AO.


Subject(s)
Aldehyde Oxidase/metabolism , Hydrocarbons/metabolism
5.
J Am Chem Soc ; 135(32): 12122-34, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23859263

ABSTRACT

Radical addition processes can be ideally suited for the direct functionalization of heteroaromatic bases, yet these processes are only sparsely used due to the perception of poor or unreliable control of regiochemistry. A systematic investigation of factors affecting the regiochemistry of radical functionalization of heterocycles using alkylsulfinate salts revealed that certain types of substituents exert consistent and additive effects on the regioselectivity of substitution. This allowed us to establish guidelines for predicting regioselectivity on complex π-deficient heteroarenes, including pyridines, pyrimidines, pyridazines, and pyrazines. Since the relative contribution from opposing directing factors was dependent on solvent and pH, it was sometimes possible to tune the regiochemistry to a desired result by modifying reaction conditions. This methodology was applied to the direct, regioselective introduction of isopropyl groups into complex, biologically active molecules, such as diflufenican (44) and nevirapine (45).


Subject(s)
Pyrazines/chemistry , Pyridazines/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Carbon/chemistry , Electrons , Hydrogen/chemistry , Stereoisomerism
6.
Nat Protoc ; 8(6): 1042-7, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23640168

ABSTRACT

The present protocol details the synthesis of zinc bis(alkanesulfinate)s that can be used as general reagents for the formation of radical species. The zinc sulfinates described herein are generated from the corresponding sulfonyl chlorides by treatment with zinc dust. The products may be used crude, or a simple purification procedure may be performed to minimize incorporation of water and zinc chloride. Although the synthesis of the zinc sulfinate salts can generally be completed within 3 h, workup can take up to 24 h and purification can take up to 3 h. Following the steps in this protocol would enable the user to generate a small toolkit of zinc sulfinate reagents over the course of 1 week.


Subject(s)
Alkanesulfonates/chemistry , Alkanesulfonates/isolation & purification , Drug Discovery/methods , Mesylates/chemistry , Mesylates/isolation & purification , Molecular Structure , Sulfinic Acids/chemistry , Zinc/chemistry
7.
Nature ; 492(7427): 95-9, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23201691

ABSTRACT

Nitrogen-rich heterocyclic compounds have had a profound effect on human health because these chemical motifs are found in a large number of drugs used to combat a broad range of diseases and pathophysiological conditions. Advances in transition-metal-mediated cross-coupling have simplified the synthesis of such molecules; however, C-H functionalization of medicinally important heterocycles that does not rely on pre-functionalized starting materials is an underdeveloped area. Unfortunately, the innate properties of heterocycles that make them so desirable for biological applications--such as aqueous solubility and their ability to act as ligands--render them challenging substrates for direct chemical functionalization. Here we report that zinc sulphinate salts can be used to transfer alkyl radicals to heterocycles, allowing for the mild (moderate temperature, 50 °C or less), direct and operationally simple formation of medicinally relevant C-C bonds while reacting in a complementary fashion to other innate C-H functionalization methods (Minisci, borono-Minisci, electrophilic aromatic substitution, transition-metal-mediated C-H insertion and C-H deprotonation). We prepared a toolkit of these reagents and studied their reactivity across a wide range of heterocycles (natural products, drugs and building blocks) without recourse to protecting-group chemistry. The reagents can even be used in tandem fashion in a single pot in the presence of water and air.


Subject(s)
Carbon/chemistry , Hydrogen/chemistry , Air , Alkylation , Biological Products/chemistry , Drug Design , Hydrogen Bonding , Indicators and Reagents/chemistry , Methylation , Nitrogen/chemistry , Pharmaceutical Preparations/chemistry , Sulfinic Acids/chemistry , Water , Zinc/chemistry
8.
Chem Soc Rev ; 40(4): 1885-98, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21390391

ABSTRACT

Metal-catalysed C-H bond functionalisation has had a significant impact on how chemists make molecules. Translating the methodological developments to their use in the assembly of complex natural products is an important challenge for the continued advancement of chemical synthesis. In this tutorial review, we describe selected recent examples of how the metal-catalysed C-H bond functionalisation has been able to positively affect the synthesis of natural products.


Subject(s)
Biological Products/chemical synthesis , Carbon/chemistry , Hydrogen/chemistry , Metals/chemistry , Biological Products/chemistry , Catalysis , Oxidation-Reduction , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...