Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 92(6): 065105, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243552

ABSTRACT

We demonstrate an instrument for spatially resolved measurements (mapping) of electrochemical impedance under various temperatures and gas environments. Automated measurements are controlled by a custom LabVIEW program, which manages probe motion, sample motion, temperature ramps, and potentiostat functions. Sample and probe positioning is provided by stepper motors. Dry or hydrated atmospheres (air or nitrogen) are available. The configurable heater reaches temperatures up to 500 °C, although the temperature at the sample surface is moderated by the gas flow rate. The local gas environment is controlled by directing flow toward the sample via a glass enclosure that surrounds the gold wire probe. Software and hardware selection and design are discussed. Reproducibility and accuracy are quantified on a Ba(Zr,Y)O3-δ proton-conducting electrolyte thin film synthesized by pulsed laser deposition. The mapping feature of the instrument is demonstrated on a compositionally graded array of electrocatalytically active Ba(Co,Fe,Zr,Y)O3-δ thin film microelectrodes. The resulting data indicate that this method proficiently maps property trends in these materials, thus demonstrating the reliability and usefulness of this method for investigating electrochemically active thin films.

2.
Nature ; 591(7849): 246-251, 2021 03.
Article in English | MEDLINE | ID: mdl-33692558

ABSTRACT

One challenge for the commercial development of solid oxide fuel cells as efficient energy-conversion devices is thermo-mechanical instability. Large internal-strain gradients caused by the mismatch in thermal expansion behaviour between different fuel cell components are the main cause of this instability, which can lead to cell degradation, delamination or fracture1-4. Here we demonstrate an approach to realizing full thermo-mechanical compatibility between the cathode and other cell components by introducing a thermal-expansion offset. We use reactive sintering to combine a cobalt-based perovskite with high electrochemical activity and large thermal-expansion coefficient with a negative-thermal-expansion material, thus forming a composite electrode with a thermal-expansion behaviour that is well matched to that of the electrolyte. A new interphase is formed because of the limited reaction between the two materials in the composite during the calcination process, which also creates A-site deficiencies in the perovskite. As a result, the composite shows both high activity and excellent stability. The introduction of reactive negative-thermal-expansion components may provide a general strategy for the development of fully compatible and highly active electrodes for solid oxide fuel cells.

3.
Nat Mater ; 20(3): 301-313, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33349671

ABSTRACT

Triple ionic-electronic conductors (TIECs) are materials that can simultaneously transport electronic species alongside two ionic species. The recent emergence of TIECs provides intriguing opportunities to maximize performance in a variety of electrochemical devices, including fuel cells, membrane reactors and electrolysis cells. However, the potential application of these nascent materials is limited by lack of fundamental knowledge of their transport properties and electrocatalytic activity. The goal of this Review is to summarize and analyse the current understanding of TIEC transport and electrochemistry in single-phase materials, including defect formation and conduction mechanisms. We particularly focus on the discovery criteria (for example, crystal structure and ion electronegativity), design principles (for example, cation and anion substitution chemistry) and operating conditions (for example, atmosphere) of materials that enable deliberate tuning of the conductivity of each charge carrier. Lastly, we identify important areas for further advances, including higher chemical stability, lower operating temperatures and discovery of n-type TIEC materials.

4.
Commun Chem ; 4(1): 121, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-36697696

ABSTRACT

The intermediate operating temperatures (~400-600 °C) of reversible protonic ceramic fuel cells (RePCFC) permit the potential use of ammonia as a carbon-neutral high energy density fuel and energy storage medium. Here we show fabrication of anode-supported RePCFC with an ultra-dense (~100%) and thin (4 µm) protonic ceramic electrolyte layer. When coupled to a novel Ru-(BaO)2(CaO)(Al2O3) (Ru-B2CA) reversible ammonia catalyst, maximum fuel-cell power generation reaches 877 mW cm-2 at 650 °C under ammonia fuel. We report relatively stable operation at 600 °C for up to 1250 h under ammonia fuel. In fuel production mode, ammonia rates exceed 1.2 × 10-8 NH3 mol cm-2 s-1at ambient pressure with H2 from electrolysis only, and 2.1 × 10-6 mol NH3 cm-2 s-1 at 12.5 bar with H2 from both electrolysis and simulated recycling gas.

5.
Nat Commun ; 11(1): 2002, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32332731

ABSTRACT

The development of oxygen evolution reaction (OER) electrocatalysts remains a major challenge that requires significant advances in both mechanistic understanding and material design. Recent studies show that oxygen from the perovskite oxide lattice could participate in the OER via a lattice oxygen-mediated mechanism, providing possibilities for the development of alternative electrocatalysts that could overcome the scaling relations-induced limitations found in conventional catalysts utilizing the adsorbate evolution mechanism. Here we distinguish the extent to which the participation of lattice oxygen can contribute to the OER through the rational design of a model system of silicon-incorporated strontium cobaltite perovskite electrocatalysts with similar surface transition metal properties yet different oxygen diffusion rates. The as-derived silicon-incorporated perovskite exhibits a 12.8-fold increase in oxygen diffusivity, which matches well with the 10-fold improvement of intrinsic OER activity, suggesting that the observed activity increase is dominantly a result of the enhanced lattice oxygen participation.

6.
Inorg Chem ; 58(12): 7705-7714, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31145593

ABSTRACT

Ruddlesden-Popper (layered perovskite) phases are attracting significant interest because of their unique potential for many applications requiring mixed ionic and electronic conductivity. Here we report a new, previously undiscovered layered perovskite of composition, Ce xSr2- xMnO4 ( x = 0.1, 0.2, and 0.3). Furthermore, we demonstrate that this new system is suitable for solar thermochemical hydrogen production (STCH). Synchrotron radiation X-ray diffraction and transmission electron microscopy are performed to characterize this new system. Density functional theory calculations of phase stability and oxygen vacancy formation energy (1.76, 2.24, and 2.66 eV/O atom, respectively with increasing Ce content) reinforce the potential of this phase for STCH application. Experimental hydrogen production results show that this materials system produces 2-3 times more hydrogen than the benchmark STCH oxide ceria at a reduction temperature of 1400 °C and an oxidation temperature of 1000 °C.

7.
Nature ; 557(7704): 217-222, 2018 05.
Article in English | MEDLINE | ID: mdl-29743690

ABSTRACT

Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency1,2. Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time3-6. Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells2,7,8, there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.

8.
Materials (Basel) ; 11(2)2018 Jan 26.
Article in English | MEDLINE | ID: mdl-29373541

ABSTRACT

The effect of A-site cation ordering on the cathode performance and chemical stability of A-site cation ordered LaBaCo2O5+δ and disordered La0.5Ba0.5CoO3-δ materials are reported. Symmetric half-cells with a proton-conducting BaZr0.9Y0.1O3-δ electrolyte were prepared by ceramic processing, and good chemical compatibility of the materials was demonstrated. Both A-site ordered LaBaCo2O5+δ and A-site disordered La0.5Ba0.5CoO3-δ yield excellent cathode performance with Area Specific Resistances as low as 7.4 and 11.5 Ω·cm² at 400 °C and 0.16 and 0.32 Ω·cm² at 600 °C in 3% humidified synthetic air respectively. The oxygen vacancy concentration, electrical conductivity, basicity of cations and crystal structure were evaluated to rationalize the electrochemical performance of the two materials. The combination of high-basicity elements and high electrical conductivity as well as sufficient oxygen vacancy concentration explains the excellent performance of both LaBaCo2O5+δ and La0.5Ba0.5CoO3-δ materials at high temperatures. At lower temperatures, oxygen-deficiency in both materials is greatly reduced, leading to decreased performance despite the high basicity and electrical conductivity. A-site cation ordering leads to a higher oxygen vacancy concentration, which explains the better performance of LaBaCo2O5+δ. Finally, the more pronounced oxygen deficiency of the cation ordered polymorph and the lower chemical stability at reducing conditions were confirmed by coulometric titration.

9.
Dalton Trans ; 46(40): 13903-13911, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28972232

ABSTRACT

A precious metal-free cathode catalyst, mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3-δ (m-BSCF), with a well crystallized perovskite framework and a porous structure (pore size of ∼10 nm) has been synthesized by a one-step co-nanocasting method. The obtained mesoporous perovskite m-BSCF demonstrated a much higher oxygen reduction reaction catalytic activity than its macroporous (CS-BSCF of ∼5 µm pore size) and nonporous counterparts (SG-BSCF). The mesoporous structure and oxygen vacancies endowed the obtained perovskite oxide m-BSCF with an approximate 4e- pathway for the ORR comparable to the benchmark 20 wt% Pt/C and a stable electro-catalytic activity with 91% current density being retained after 5000 cycles, and excellent methanol tolerance. The redox couples Co4+/Co3+ and Fe3+/Fe2+ are proposed to accelerate the ORR on active species, i.e., MOOH (M = Co, Fe) groups produced by the substitution species of Co and Fe in the B-site of perovskite m-BSCF, and in the meantime oxygen vacancies generated by the redox couples play a key role in activating the oxygen molecules.

10.
Nano Lett ; 16(11): 6924-6930, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27696864

ABSTRACT

A laser-assisted atom-probe-tomographic (LAAPT) method has been developed and applied to measure and characterize the three-dimensional atomic and electronic nanostructure at an yttrium-doped barium zirconate (BaZr0.9Y0.1O3-δ, BZY10) grain boundary. Proton-conducting perovskites, such as BZY10, are attracting intense interest for a variety of energy conversion applications. However, their implementation has been hindered, in part, because of high grain-boundary (GB) resistance that is attributed to a positive GB space-charge layer (SCL). In this study, LAAPT is used to analyze BZY10 GB chemistry in three dimensions with subnanometer resolution. From this analysis, maps of the charge density and electrostatic potential arising at the GBs are derived, revealing for the first time direct chemical evidence that a positive SCL indeed exists at these GBs. These maps reveal new insights on the inhomogeneity of the SCL region and produce an average GB potential barrier of approximately 580 mV, agreeing with previous indirect electrochemical measurements.

11.
Sci Rep ; 6: 32830, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27610922

ABSTRACT

Transparent conducting oxide (TCO) coatings with decreased cost and greater process or performance versatility are needed for a variety of optoelectronic applications. Among potential new TCO candidates, doped titanium dioxide is receiving particular interest. In this study, niobium-doped titania bilayer structures consisting of a nanoscale seed layer (deposited by atomic layer deposition or RF magnetron sputtering) followed by a thick bulk-like layer were grown directly on glass in order to examine the effects of the seed layer processing on the subsequent crystallization and electrical properties of these heterostructures. Observations from Raman spectroscopy suggest that higher oxygen content in the seed layer suppresses the formation of detrimental titania polymorph phases, found in films produced by annealing directly after synthesis without any exposure to oxygen. Furthermore, our results indicate that the generation of excellent Nb:TiO2 conductors on glass (without breaking vacuum) only occurs within a narrow processing range and that the sequential deposition of oxygen-poor layers on oxygen-rich layers is a critical step towards achieving films with low resistivity.

12.
Nano Lett ; 15(11): 7678-83, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26502159

ABSTRACT

The high-energy nature of grain boundaries makes them a common source of undesirable phase transformations in polycrystalline materials. In both metals and ceramics, such grain-boundary-induced phase transformation can be a frequent cause of performance degradation. Here, we identify a new stabilization mechanism that involves inhibiting phase transformations of perovskite materials by deliberately introducing nanoparticles at the grain boundaries. The nanoparticles act as "roadblocks" that limit the diffusion of metal ions along the grain boundaries and inhibit heterogeneous nucleation and new phase formation. Ba0.5Sr0.5Co0.8Fe0.2O3-δ, a high-performance oxygen permeation and fuel cell cathode material whose commercial application has so far been impeded by phase instability, is used as an example to illustrate the inhibition action of nanoparticles toward the phase transformation. We obtain stable oxygen permeation flux at 600 °C with an unprecedented 10-1000 times increase in performance compared to previous investigations. This grain boundary stabilization method could potentially be extended to other systems that suffer from performance degradation due to a grain-boundary-initiated heterogeneous nucleation phase transformations.

13.
J Phys Chem Lett ; 6(10): 1948-53, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26263275

ABSTRACT

Oxygen vacancies (V(O)) in oxides are extensively used to manipulate vital material properties. Although methods to predict defect formation energies have advanced significantly, an understanding of the intrinsic material properties that govern defect energetics lags. We use first-principles calculations to study the connection between intrinsic (bulk) material properties and the energy to form a single, charge neutral oxygen vacancy (E(V)). We investigate 45 binary and ternary oxides and find that a simple model which combines (i) the oxide enthalpy of formation (ΔH(f)), (ii) the midgap energy relative to the O 2p band center (E(O 2p) + (1/2)E(g)), and (iii) atomic electronegativities reproduces calculated E(V) within ∼0.2 eV. This result provides both valuable insights into the key properties influencing E(V) and a direct method to predict E(V). We then predict the E(V) of ∼1800 oxides and validate the predictive nature of our approach against direct defect calculations for a subset of 18 randomly selected materials.

14.
Science ; 349(6254): 1321-6, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26217064

ABSTRACT

Because of the generally lower activation energy associated with proton conduction in oxides compared to oxygen ion conduction, protonic ceramic fuel cells (PCFCs) should be able to operate at lower temperatures than solid oxide fuel cells (250° to 550°C versus ≥600°C) on hydrogen and hydrocarbon fuels if fabrication challenges and suitable cathodes can be developed. We fabricated the complete sandwich structure of PCFCs directly from raw precursor oxides with only one moderate-temperature processing step through the use of sintering agents such as copper oxide. We also developed a proton-, oxygen-ion-, and electron-hole-conducting PCFC-compatible cathode material, BaCo(0.4)Fe(0.4)Zr(0.1)Y(0.1)O(3-δ) (BCFZY0.1), that greatly improved oxygen reduction reaction kinetics at intermediate to low temperatures. We demonstrated high performance from five different types of PCFC button cells without degradation after 1400 hours. Power densities as high as 455 milliwatts per square centimeter at 500°C on H2 and 142 milliwatts per square centimeter on CH4 were achieved, and operation was possible even at 350°C.

15.
ChemSusChem ; 7(7): 1854-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24889380

ABSTRACT

A commercial PtRu/C catalyst postdoped with nitrogen demonstrates a significantly higher performance (~10-20% improvement) in the anode of an alkaline direct methanol fuel cell than an unmodified commercial PtRu/C catalyst control. The enhanced performance shown herein is attributed at least partially to the increased electrochemical surface area of the PtRu/C after postdoping with nitrogen.


Subject(s)
Electric Power Supplies , Methanol/chemistry , Nitrogen/chemistry , Catalysis , Electrodes , Hydrogen-Ion Concentration
16.
Nanoscale ; 5(11): 5036-42, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23640283

ABSTRACT

This work demonstrates a novel multifunctional nanofibrous mat for photocatalytic applications based on TiO2 nanocables functionalized by Ag nanoparticles and coated with a thin (~2 nm) graphitic shell. In this mat, which was realized by an electrospinning technique, each component serves a unique function: the carbon coating acts as both an adsorption material for capturing pollutants and as a charge-transfer material, the Ag nanoparticles act as a visible-light sensitizing agent and also as a charge-transfer material, finally the TiO2 nanocable mat acts as a UV sensitive photocatalytic matrix and as the flexible substrate for the other functional components. This multicomponent nanocable mat exhibits excellent photocatalytic activity under simulated solar irradiation for the degradation of model pollutants including RhB and phenol. The significant photocatalytic properties are attributed to the synergetic effect of the three functional components and the unique charge transport "freeway" property of the nanofibrous mat. In addition, the porous carbon coating infiltrated into the nanocable matrix endows the mat with excellent flexibility and enables robust, large-area (10 × 10 cm) fabrication, representing a significant advantage over previous brittle ceramic nanofibrous mat photocatalyst substrates. This study provides new insight into the design and preparation of an advanced, yet commercially practical and scaleable photocatalytic composite membrane material. The as-prepared photocatalytic mat might also be of interest in solar cell, catalysis, separation technology, biomedical engineering, and nanotechnology.


Subject(s)
Nanofibers/chemistry , Ultraviolet Rays , Carbon/chemistry , Catalysis , Phenols/chemistry , Photolysis , Rhodamines/chemistry , Silver/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry
18.
ACS Appl Mater Interfaces ; 4(12): 6728-34, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23194033

ABSTRACT

Modification of physiochemical and structural properties of carbon-based materials through targeted functionalization is a useful way to improve the properties and performance of such catalyst materials. This work explores the incorporation of dopants, including nitrogen, iodine, and fluorine, into the carbon structure of highly-oriented pyrolytic graphite (HOPG) and its potential benefits on the stability of PtRu catalyst nanoparticles. Evaluation of the changes in the catalyst nanoparticle coverage and size as a function of implantation parameters reveals that carbon supports functionalized with a combination of nitrogen and fluorine provide the most beneficial interactions, resulting in suppressed particle coarsening and dissolution. Benefits of a carefully tuned support system modified with fluorine and nitrogen surpass those obtained with nitrogen (no fluorine) modification. Ion implantation of iodine into HOPG results in a consistent amount of structural damage to the carbon matrix, regardless of dose. For this modification, improvements in stability are similar to nitrogen modification; however, the benefit is only observed at higher dose conditions. This indicates that a mechanism different than the one associated with nitrogen may be responsible for the improved durability.

19.
J Magn Reson ; 225: 58-61, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23143009

ABSTRACT

A technique for determining the size of metallic nanoparticles incorporated into a ceramic is demonstrated using conduction electron paramagnetic resonance (CEPR). The resonances associated with palladium nanoparticles in a perovskite material are identified and studied as a function of temperature. As this line shape changes with temperature, the point at which the skin depth of the palladium is the same as the size of the nanoparticles is clearly identified due to a microwave saturation effect. This allows for a determination of their average size, which, in this case is 75±20nm. This is the first example of CEPR being used to determine metallic nanoparticle size in a technologically relevant, embedded in a non EPR-inert material system.

20.
Chem Soc Rev ; 40(11): 5406-41, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21687838

ABSTRACT

This critical review focuses on the solution deposition of transparent conductors with a particular focus on transparent conducting oxide (TCO) thin-films. TCOs play a critical role in many current and emerging opto-electronic devices due to their unique combination of electronic conductivity and transparency in the visible region of the spectrum. Atmospheric-pressure solution processing is an attractive alternative to conventional vacuum-based deposition methods due to its ease of fabrication, scalability, and potential to lower device manufacturing costs. An introduction into the applications of and material criteria for TCOs will be presented first, followed by a discussion of solution routes to these systems. Recent studies in the field will be reviewed according to their materials system. Finally, the challenges and opportunities for further enabling research will be discussed in terms of emerging oxide systems and non-oxide based transparent conductors (341 references).

SELECTION OF CITATIONS
SEARCH DETAIL
...