Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38931663

ABSTRACT

Various approaches have been proposed for bridge structural health monitoring. One of the earliest approaches proposed was tracking a bridge's natural frequency over time to look for abnormal shifts in frequency that might indicate a change in stiffness. However, bridge frequencies change naturally as the structure's temperature changes. Data models can be used to overcome this problem by predicting normal changes to a structure's natural frequency and comparing it to the historical normal behaviour of the bridge and, therefore, identifying abnormal behaviour. Most of the proposed data modelling work has been from long-span bridges where you generally have large datasets to work with. A more limited body of research has been conducted where there is a sparse amount of data, but even this has only been demonstrated on single bridges. Therefore, the novelty of this work is that it expands on previous work using sparse instrumentation across a network of bridges. The data collected from four in-operation bridges were used to validate data models and test the capabilities of the data models across a range of bridge types/sizes. The MID approach was found to be able to detect an average frequency shift of 0.021 Hz across all of the data models. The significance of this demonstration across different bridge types is the practical utility of these data models to be used across entire bridge networks, enabling accurate and informed decision making in bridge maintenance and management.

2.
Sensors (Basel) ; 23(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37514621

ABSTRACT

Structural Health Monitoring (SHM) is a technique that involves gathering information to ensure that a structure is safe and behaving as expected. Within SHM, vibration-based monitoring is generally seen as one of the more cost-effective types of monitoring. However, vibration-based monitoring has mostly been undertaken on long-span bridges using data collected with a dense network of sensors. Historically, the logistical difficulty of collecting data on short- and medium-span bridges has meant that the usefulness of vibration-based methods on these bridges is largely unknown. Therefore, this study proposes Minimal Information Data-modelling (MID). MID is an approach that utilises low-cost, easily implementable sensors that are potentially feasible for operators to purchase and operate across a network. This approach will be investigated to determine whether MID is a feasible approach for monitoring short- and medium- span bridges. The results from MID were assessed to determine whether they could detect a suitably small shift in frequency, which is indicative of damage. It was determined that the data models could reliably detect frequency shifts as low as 0.01 Hz. This magnitude of frequency shift is similar to the level of frequency shift reported for a range of bridge damage cases found by others and validated with FE models. The accuracy achieved by the data models indicates that MID could potentially be used as a damage detection method. The cost of the equipment used to collect the data was approximately £370, demonstrating that it is feasible to use MID to monitor bridges across an entire network.

SELECTION OF CITATIONS
SEARCH DETAIL
...