Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Chemosphere ; 349: 140962, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104739

ABSTRACT

Formaldehyde (HCHO) is a key carcinogen and plays an important role in atmospheric chemistry. Both field measurements and Positive Matrix Factorization (PMF) modeling have been employed to investigate the concentrations and sources of HCHO in the Lewiston-Clarkston (LC) valley of the mountainous northwestern U.S. Different instruments were deployed to measure surface formaldehyde and other related compounds in July of 2016 and 2017. The measurements reveal that the average HCHO concentrations have significantly decreased to 2-5 ppb in the LC valley in comparison to its levels (10-20 ppb) observed in July 2006. This discovery with surface measurements deserves attention given that satellite retrievals showed an increasing long-term trend from 2005 to 2014 in total vertical column density of HCHO in the region, suggesting that satellite instruments may not adequately resolve small valleys in the mountainous region. Our PMF modeling identified four major sources of HCHO in the valley: (1) emissions from a local paper mill, (2) secondary formation and background, (3) biogenic sources, and (4) traffic. This study reveals that the emissions from the paper mill cause high HCHO spikes (6-19 ppb) in the early morning. It is found that biogenic volatile organic compounds (VOCs) in the area are influenced by national forests surrounding the region (e.g., Nez Perce-Clearwater, Umatilla, Wallowa-Whitman, and Idaho Panhandle National Forests). The results provide useful information for developing strategies to control HCHO levels and have implications for future HCHO studies in atmospheric chemistry, which affects secondary aerosols and ozone formation.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Formaldehyde/analysis , Ozone/analysis , Environment , Northwestern United States , Volatile Organic Compounds/analysis , Environmental Monitoring/methods
2.
Nat Commun ; 11(1): 112, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31913265

ABSTRACT

The relaxation of photoexcited nanosystems is a fundamental process of light-matter interaction. Depending on the couplings of the internal degrees of freedom, relaxation can be ultrafast, converting electronic energy in a few fs, or slow, if the energy is trapped in a metastable state that decouples from its environment. Here, we study helium nanodroplets excited resonantly by femtosecond extreme-ultraviolet (XUV) pulses from a seeded free-electron laser. Despite their superfluid nature, we find that helium nanodroplets in the lowest electronically excited states undergo ultrafast relaxation. By comparing experimental photoelectron spectra with time-dependent density functional theory simulations, we unravel the full relaxation pathway: Following an ultrafast interband transition, a void nanometer-sized bubble forms around the localized excitation (He[Formula: see text]) within 1 ps. Subsequently, the bubble collapses and releases metastable He[Formula: see text] at the droplet surface. This study highlights the high level of detail achievable in probing the photodynamics of nanosystems using tunable XUV pulses.

3.
Nano Lett ; 19(2): 684-691, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30669832

ABSTRACT

Hot-carriers, that is, charge carriers with an effective temperature higher than that of the lattice, may contribute to the high power conversion efficiency (PCE) shown by perovskite-based solar cells (PSCs), which are now competitive with silicon solar cells. Hot-carriers lose their excess energy in very short times, typically in a few picoseconds after excitation. For this reason, the carrier dynamics occurring on this time scale are extremely important in determining the participation of hot-carriers in the photovoltaic process. However, the stability of PSCs over time still remains an issue that calls for a solution. In this work, we demonstrate that the insertion of graphene flakes into the mesoscopic TiO2 scaffold leads to stable values of carrier temperature. In PSCs aged over 1 week, we indeed observe that in the graphene-free perovskite cells the carrier temperature decreases by about 500 K from 1800 to 1300 K, while the graphene-containing cell shows a reduction of less than 200 K after the same aging time delay. The stability of the carrier temperature reflects the stability of the perovskite nanocrystals embedded in the mesoporous graphene-TiO2 layer. Our results, based on femtosecond transient absorption measurements, show that the insertion of graphene can be beneficial for the design of stable PSCs with the aim of exploiting the hot-carrier contribution to the PCE of the PSCs.

4.
J Phys Chem Lett ; 9(20): 6012-6016, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30253105

ABSTRACT

Hydrogen migration in the glycine cation has been investigated using a combination of a short train of attosecond extreme ultraviolet pulses with few-optical-cycle near-infrared pulses. The yield of the photofragments produced has been measured as a function of pump-probe delay. These time-dependent measurements reveal the presence of a hydrogen migration process occurring in 48 fs. Previous mass spectrometric experiments and theoretical calculations have allowed us to identify the conformations and cation states involved in the process induced by the broad band extreme ultraviolet radiation.

5.
J Phys Chem Lett ; 9(17): 5002-5008, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30107131

ABSTRACT

In this work, we show how to control the morphology of femtosecond laser melted gold nanosphere aggregates. A careful choice of both laser fluence and wavelength makes it possible to selectively excite different aggregate substructures to produce larger spherical nanoparticles, nanorods, and nanoprisms or necklace-like 1D nanostructures in which the nanoparticles are interlinked by bridges. Finite integral technique calculations have been performed on the near-field concentration of light in the nanostructures which confirm the wavelength dependence of the light concentration and suggest that the resulting localized high intensities lead to nonthermal melting. We show that by tuning the wavelength of the melting light it is possible to choose the spatial extension of the ensembles of NPs heated thus allowing us to exhibit control over the morphology of the nanostructures formed by the melting process. By a proper combination of this method with self-assembly of chemically synthesized nanoparticles, one can envisage the development of an innovative high-throughput high-resolution nanofabrication technique.

6.
Phys Rev Lett ; 116(20): 203001, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27258866

ABSTRACT

We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.

7.
Nat Commun ; 6: 6799, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25854939

ABSTRACT

Collective behaviour is a characteristic feature in many-body systems, important for developments in fields such as magnetism, superconductivity, photonics and electronics. Recently, there has been increasing interest in the optically nonlinear response of collective excitations. Here we demonstrate how the nonlinear interaction of a many-body system with intense XUV radiation can be used as an effective probe for characterizing otherwise unresolved features of its collective response. Resonant photoionization of atomic xenon was chosen as a case study. The excellent agreement between experiment and theory strongly supports the prediction that two distinct poles underlie the giant dipole resonance. Our results pave the way towards a deeper understanding of collective behaviour in atoms, molecules and solid-state systems using nonlinear spectroscopic techniques enabled by modern short-wavelength light sources.

8.
Nat Commun ; 5: 3648, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24736496

ABSTRACT

Ultrafast extreme ultraviolet and X-ray free-electron lasers are set to revolutionize many domains such as bio-photonics and materials science, in a manner similar to optical lasers over the past two decades. Although their number will grow steadily over the coming decade, their complete characterization remains an elusive goal. This represents a significant barrier to their wider adoption and hence to the full realization of their potential in modern photon sciences. Although a great deal of progress has been made on temporal characterization and wavefront measurements at ultrahigh extreme ultraviolet and X-ray intensities, only few, if any progress on accurately measuring other key parameters such as the state of polarization has emerged. Here we show that by combining ultra-short extreme ultraviolet free electron laser pulses from FERMI with near-infrared laser pulses, we can accurately measure the polarization state of a free electron laser beam in an elegant, non-invasive and straightforward manner using circular dichroism.

9.
Phys Rev Lett ; 112(7): 073401, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24579595

ABSTRACT

The ionization dynamics of He nanodroplets irradiated with intense femtosecond extreme ultraviolet pulses of up to 1013 W/cm2 power density have been investigated by photoelectron spectroscopy. Helium droplets were resonantly excited to atomiclike 2p states with a photon energy of 21.4 eV, below the ionization potential (Ip), and directly into the ionization continuum with 42.8 eV photons. While electron emission following direct ionization above Ip is well explained within a model based on a sequence of direct electron emission events, the resonant excitation provides evidence of a new, collective ionization mechanism involving many excited atomiclike 2p states. With increasing power density the direct photoline due to an interatomic Coulombic decay disappears. It indicates that ionization occurs due to energy exchange between at least three excited atoms proceeding on a femtosecond time scale. In agreement with recent theoretical work the novel ionization process is very efficient and it is expected to be important for many other systems.


Subject(s)
Helium/chemistry , Models, Chemical , Nanoparticles/chemistry , Electrons , Ions/chemistry , Photochemical Processes , Photoelectron Spectroscopy/methods , Ultraviolet Rays
10.
Sci Rep ; 4: 3621, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24406316

ABSTRACT

Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields.

11.
J Chem Phys ; 139(8): 084301, 2013 Aug 28.
Article in English | MEDLINE | ID: mdl-24006991

ABSTRACT

The ionization dynamics of pure He nanodroplets irradiated by Extreme ultraviolet radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He(+), He2(+), and He3(+). Surprisingly, below the autoionization threshold of He droplets, we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process. At high photon energies we observe inelastic collisions of photoelectrons with the surrounding He atoms in the droplets.

12.
Phys Rev Lett ; 111(24): 243002, 2013 Dec 13.
Article in English | MEDLINE | ID: mdl-24483651

ABSTRACT

Angle-resolved electron spectroscopy in coincidence with high-resolution mass spectroscopy has been applied to study two-color resonant photoionization in atomic xenon. Separation of different isotopes enabled us to extract results for the electronic dynamics free from depolarization effects, which are generally introduced by the coupling of the electronic and nuclear angular momenta. The concerted experimental and theoretical analysis of the photoelectron angular distributions in the region of an autoionizing resonance emphasizes the strong sensitivity of the observed structures to the fine details of the treatment of the underlying dynamics.

13.
J Chem Phys ; 136(15): 154308, 2012 Apr 21.
Article in English | MEDLINE | ID: mdl-22519327

ABSTRACT

The resonant Auger electron spectra obtained after photoexcitation below the C and N 1s ionization thresholds in the pyrimidine molecule have been measured at several photon energies. The results show the relevance of the localization of the inner hole and of the matching between the symmetries of the intermediate and final states in the decay spectra via participator transitions. The comparison with the Auger electron spectra suggests some assignment for the two-hole-one-particle states reached via spectator transitions. The analysis of the participator decay is supported by state-of-the art density functional theory calculations.


Subject(s)
Carbon/chemistry , Nitrogen/chemistry , Pyrimidines/chemistry , Spectrum Analysis/methods , Quantum Theory
14.
J Chem Phys ; 136(10): 104307, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22423838

ABSTRACT

A recently developed velocity map imaging spectrometer has been used to study the photoionization of molecular nitrogen near threshold. The potentialities of the spectrometer have been exploited to measure simultaneously the energy and angular distribution of the photoelectrons corresponding to the residual N(2)(+) X(2)Σ(g) v = 0-3 ion states. In a single experiment all the experimental observables, i.e., the total and partial cross sections, their branching ratios and the asymmetry parameter of the angular distributions have been determined.

15.
J Chem Phys ; 134(17): 174311, 2011 May 07.
Article in English | MEDLINE | ID: mdl-21548691

ABSTRACT

Photoabsorption and S 2p photoionization of the SF(6) molecule have been studied experimentally and theoretically in the excitation energy range up to 100 eV above the S 2p ionization potentials. In addition to the well-known 2t(2g) and 4e(g) shape resonances, the spin-orbit-resolved S 2p photoionization cross sections display two weak resonances between 200 and 210 eV, a wide resonance around 217 eV, a Fano-type resonance around 240 eV, and a second wide resonance around 260 eV. Calculations based on time-dependent density functional theory allow us to assign the 217-eV and 260-eV features to the shape resonances in S 2p photoionization. The Fano resonance is caused by the interference between the direct S 2p photoionization channel and the resonant channel that results from the participator decay of the S 2s(-1)6t(1u) excited state. The weak resonances below 210-eV photon energy, not predicted by theory, are tentatively suggested to originate from the coupling between S 2p shake-up photoionization and S 2p single-hole photoionization. The experimental and calculated angular anisotropy parameters for S 2p photoionization are in good agreement.

16.
Rev Sci Instrum ; 82(3): 033109, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21456720

ABSTRACT

A velocity map imaging/ion time-of-flight spectrometer designed specifically for pump-probe experiments combining synchrotron and laser radiations is described. The in-house built delay line detector can be used in two modes: the high spatial resolution mode and the coincidence mode. In the high spatial resolution mode a kinetic energy resolution of 6% has been achieved. The coincidence mode can be used to improve signal-to-noise ratio for the pump-probe experiments either by using a gate to count electrons only when the laser is present or by recording coincidences with the ion formed in the ionization process.

17.
J Chem Phys ; 134(9): 094308, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21384970

ABSTRACT

The S 2p Auger spectrum of SF(6) has been studied in the region of the 2t(2g) and 4e(g) resonances. The partial Auger spectra due to the ionization of the 2p spin-orbit components and of a shake-up satellite state have been measured selectively by tuning the photon energy and using the Auger electron-photoelectron coincidence technique. A detailed analysis of the Auger spectrum has also been performed using the Green's function-based second-order algebraic diagrammatic construction method.

18.
J Chem Phys ; 133(3): 034302, 2010 Jul 21.
Article in English | MEDLINE | ID: mdl-20649325

ABSTRACT

The inner shell excitation of pyrimidine and some halogenated pyrimidines near the C and N K-edges has been investigated experimentally by near edge x-ray absorption fine structure spectroscopy and theoretically by density functional theory calculations. The selected targets, 5-Br-pyrimidine, 2-Br-pyrimidine, 2-Cl-pyrimidine, and 5-Br-2-Cl-pyrimidine, allow the effects of the functionalization of the pyrimidine ring to be studied either as a function of different halogen atoms bound to the same molecular site or as a function of the same halogen atom bound to different molecular sites. The results show that the individual characteristics of the different spectra of the substituted pyrimidines can be rationalized in terms of variations in electronic and geometrical structures of the molecule depending on the localization and the electronegativity of the substituent.


Subject(s)
Halogenation , Pyrimidines/chemistry , Quantum Theory , X-Ray Absorption Spectroscopy , Vibration
19.
J Phys Chem A ; 113(52): 15136-41, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-20028181

ABSTRACT

The selectivity of the photoelectron-Auger electron coincidence technique has been used to isolate the S L(3)MM contribution to the L(2,3)MM Auger spectrum in OCS. In this way, a direct comparison of the energies, widths, and relative intensities of the final OCS(2+) states with theoretical calculations has been achieved. Moreover, the angular distributions of some selected Auger electrons have been measured in coincidence with the photoelectron at two different photon energies. In contrast with the results of noncoincidence measurements, the coincidence angular distributions show a significant asymmetry and a dependence on the photon energy and OCS(2+) final state.

20.
J Phys Chem A ; 113(48): 13593-600, 2009 Dec 03.
Article in English | MEDLINE | ID: mdl-19929014

ABSTRACT

The inner shell ionization of pyrimidine and some halogenated pyrimidines has been investigated experimentally by X-ray photoemission spectroscopy (XPS) and theoretically by density functional theory (DFT) methods. The selected targets-5-Br-pyrimidine, 2-Br-pyrimidine, 2-Cl-pyrimidine, and 5-Br-2-Cl-pyrimidine-allowed the study of the effect of the functionalization of the pyrimidine ring by different halogen atoms bound to the same molecular site, or by the same halogen atom bound to different molecular sites. The theoretical investigation of the inductive and resonance effects in the C(1s) ionization confirms the soundness of the resonance model for a qualitative description of the properties of an aromatic system. Moreover, the combination of the experimental results and the theoretical analysis provides a detailed description of the effects of the halogen atom on the screening of a C(1s) hole in the aromatic pyrimidine ring.

SELECTION OF CITATIONS
SEARCH DETAIL
...