Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 54(4): 2143-2151, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31898894

ABSTRACT

Whole-house emission rates and indoor loss coefficients of formaldehyde and other volatile organic compounds (VOCs) were determined from continuous measurements inside a net-zero energy home at two different air change rates (ACHs). By turning the mechanical ventilation on and off, it was demonstrated that formaldehyde concentrations reach a steady state much more quickly than other VOCs, consistent with a significant indoor loss rate attributed to surface uptake. The first order loss coefficient for formaldehyde was 0.47 ± 0.06 h-1 at 0.08 h-1 ACH and 0.88 ± 0.22 h-1 at 0.62 h-1 ACH. Loss rates for other VOCs measured were not discernible, with the exception of hexanoic acid. A factor of 5.5 increase in the ACH increased the whole-house emission rates of VOCs but by varying degrees (factors of 1.1 to 3.8), with formaldehyde displaying no significant change. The formaldehyde area-specific emission rate (86 ± 8 µg m-2 h-1) was insensitive to changes in the ACH because its large indoor loss rate muted the impact of ventilation on indoor air concentrations. These results demonstrate that formaldehyde loss rates must be taken into account to correctly estimate whole-house emission rates and that ventilation will not be as effective at reducing indoor formaldehyde concentrations as it is for other VOCs.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Environmental Monitoring , Formaldehyde , Ventilation
2.
J Geophys Res Biogeosci ; 124(7): 1887-1904, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31598447

ABSTRACT

With the addition of nitrogen (N), agricultural soils are the main anthropogenic source of N2O, but high spatial and temporal variabilities make N2O emissions difficult to characterize at the field scale. This study used flux-gradient measurements to continuously monitor N2O emissions at two agricultural fields under different management regimes in the inland Pacific Northwest of Washington State, USA. Automated 16-chamber arrays were also deployed at each site; chamber monitoring results aided the interpretation of the flux gradient results. The cumulative emissions over the six-month (1 April-30 September) monitoring period were 2.4 ± 0.7 and 2.1 ± 2 kg N2O-N/ha at the no-till and conventional till sites, respectively. At both sites, maximum N2O emissions occurred following the first rainfall event after N fertilization, and both sites had monthlong emission pulses. The no-till site had a larger N2O emission factor than the Intergovernmental Panel on Climate Change Tier 1 emission factor of 1% of the N input, while the conventional-till site's emission factor was close to 1% of the N input. However, these emission factors are likely conservative. We estimate that the global warming potential of the N2O emissions at these sites is larger than that of the no-till conversion carbon uptake. We recommend the use of chambers to investigate spatiotemporal controls as a complementary method to micrometeorological monitoring, especially in systems with high variability. Continued monitoring coupled with the use of models is necessary to investigate how changing management and environmental conditions will affect N2O emissions.

SELECTION OF CITATIONS
SEARCH DETAIL
...