Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol Hung ; 102(3): 336-41, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26551749

ABSTRACT

Research has shown that total testosterone (tT) levels in women increase acutely during a prolonged bout of aerobic exercise. Few studies, however, have considered the impact of the menstrual cycle phase on this response or have looked at the biologically active free testosterone (fT) form responses. Therefore, this study examined the fT concentration response independently and as a percentage (fT%) of tT to prolonged aerobic exercise during phases of the menstrual cycle with low estrogen-progesterone (L-EP; i.e., follicular phase) and high estrogen-progesterone (H-EP; i.e., luteal phase). Ten healthy, recreationally trained, eumennorrheic women (X ± SD: age = 20 ± 2 y, mass = 58.7 ± 8.3 kg, body fat = 22.3 ± 4.9 %, VO(2max) = 50.7 ± 9.0 ml/kg/min) participated in a laboratory based study and completed a 60-minute treadmill run during the L-EP and H-EP menstrual phases at ~70% of VO(2max). Blood was drawn prior to (PRE), immediately after (POST) and following 30 minutes of recovery (30POST) with each 60-minute run. During H-EP, there was a significant increase in fT concentrations from PRE to POST (p < 0.01) while in L-EP fT levels were unchanged; which resulted in fT being significantly higher at H-EP POST versus L-EP POST (p < 0.03). Area-under-the-curve (AUC) responses were calculated, for fT the total AUC was greater in H-EP than L-EP (p < 0.04). There was no significant interaction of fT% between phases and exercise sampling time. There was, however, a main effect for exercise where fT% POST was a greater proportion of tT than at PRE (p < 0.01). In summary, hormonal changes associated with the menstrual cycle impact fT response to a prolonged aerobic exercise bout; specifically, there being higher levels under H-EP conditions. This suggests more biologically active T is available during exercise in this phase. This response may be a function of the higher core temperatures found with H-EP causing greater sex hormone binding protein release of T, or could be a function of greater degrees of glandular production. Further work is warranted to elucidate the mechanism of this occurrence. It is recommended that researchers examining T responses to exercise in women look at both tT and fT forms in order to have an accurate endocrine assessment in women.


Subject(s)
Exercise , Menstrual Cycle/blood , Testosterone/blood , Adolescent , Biomarkers/blood , Exercise Test , Female , Humans , Time Factors , Young Adult
2.
J Sports Med Phys Fitness ; 54(5): 605-10, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25270780

ABSTRACT

AIM: Stretching before and after physical activity is a controversial aspect of exercise preparation and recovery. Minimal research has been conducted regarding the neuromuscular effects of stretching including changes in the H-reflex, motor neuron excitability and presynaptic inhibition of muscle. The aim of this study was to examine the effects of static and dynamic stretching on the neuromuscular aspects and power output of the M. Soleus. METHODS: Twenty-one healthy college students (13 F, 8 M; 19.81±0.75 y; 171±8.40 cm; 70.71±11.32 kg) participated. On separate days, participants completed either static and dynamic stretching protocols. A double electrical stimulus, assessed via electromyography, was used to elicit the H-reflex and M-wave before and after each stretching protocol. Participants performed pre- and post-stretching countermovement jumps to produce power measurements. RESULTS: After a single bout of dynamic stretching, presynaptic inhibition significantly decreased (P<0.001), whereas the static stretching produced no change (P=0.296). There was a slightly significant increase in power post-static stretching (369.03±808.3 W, P=0.049). CONCLUSION: While dynamic stretching is beneficial in decreasing presynaptic inhibition, it did not lead to the hypothesized increase in power output. This study is the first to compare neurological mechanisms and power output, giving a comprehensive view of how stretching affects muscle.


Subject(s)
Motor Neurons/physiology , Muscle Stretching Exercises , Neural Inhibition/physiology , Presynaptic Terminals/physiology , Adult , Electric Stimulation , Electromyography , Female , H-Reflex/physiology , Humans , Male , Plyometric Exercise , Tibial Nerve/physiology , Young Adult
3.
Physiol Res ; 63(6): 693-704, 2014.
Article in English | MEDLINE | ID: mdl-25157657

ABSTRACT

The biosynthesis and metabolism of testosterone and cortisol are altered by the high levels of adipose tissue and the constant state of low-grade inflammation of obesity. Resistance exercise (REx) has become one of the main lifestyle interventions prescribed to obese individuals due to its ability to positively influence body composition and some biomarkers, such as cholesterol and insulin resistance. Yet, little research has been done in obese examining the effects of REx on the testosterone and blood cortisol responses, two integral hormones in both exercise and obesity. The obese testosterone response to REx and whether or not it is blunted compared to lean individuals remains elusive. Conflicting findings concerning the blood cortisol response have also been reported, likely due to variance in REx protocol and the level of obesity in the participants in studies. Comparatively, both of these hormones have been extremely well studied in untrained lean males, which could be used as a basis for future research in obese males. However, without this endocrinological information, it is unknown if the current acute REx prescriptions are appropriate for eliciting a favorable acute endocrinological response, and ultimately, a positive chronic adaptation in obese males.


Subject(s)
Hydrocortisone/metabolism , Obesity/metabolism , Resistance Training , Testosterone/metabolism , Adult , Body Composition/physiology , Exercise Therapy , Humans , Male , Obesity/therapy
4.
Eur J Appl Physiol ; 113(9): 2419-24, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23812088

ABSTRACT

PURPOSE: To examine the androgen response to exercise in women under conditions of high (H) and low (L) estrogen (E2) levels. METHODS: Ten exercise trained eumenorrheic women (mean ± SD: 20.0 ± 2.2 years, 58.7 ± 8.3 kg, 22.3 ± 4.9 % body fat, VO2max = 50.7 ± 9.0 mL/kg/min) completed a 60 min treadmill run at ~70 % of VO2max during both the mid-follicular (L-E2, 69.7 ± 7.3 % VO2max) and mid-luteal (H-E2, 67.6 ± 7.9 % VO2max) phases of their menstrual cycle. Blood samples were taken pre-exercise (PRE), immediately post (POST), and 30 min into recovery (30R) from exercise and analyzed for total testosterone using ELISA assays. Results were analyzed using repeated measures ANOVA. RESULTS: Testosterone responses were (mean ± SD: L-E2, pre = 1.41 ± 0.21, post = 1.86 ± 0.21, 30R = 1.75 ± 0.32 nmol/L; H-E2, pre = 1.27 ± 0.23, post = 2.43 ± 0.56, 30R = 1.69 ± 0.34 nmol/L). Statistical analysis indicated no significant interaction existed between high and low estrogen conditions across the blood sampling times (p = 0.138). However, a main effect occurred for exercise (p < 0.004) with the post-testosterone concentration being greater than pre, although pre vs. 30R was not different (p > 0.05). All testosterone hormonal concentrations immediately post-exercise greatly exceeded the level of hemoconcentration observed during the L-E2 and H-E2 exercise sessions. CONCLUSIONS: Prolonged aerobic exercise induces short-term elevations in testosterone in trained eumenorrheic women, which appears unrelated to estrogen levels and menstrual cycle phase. These increases may occur due to either increased androgen production and/or decreased degradation rates of the hormone, and are not solely the result of plasma fluid shifts from the exercise.


Subject(s)
Exercise/physiology , Menstrual Cycle/blood , Testosterone/blood , Adult , Estrogens/blood , Exercise Test/methods , Female , Humans , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...