Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 20512, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654864

ABSTRACT

Impacts of invasive species are often difficult to quantify, meaning that many invaders are prioritised for management without robust, contextual evidence of impact. Most impact studies for invasive plants compare heavily invaded with non-invaded sites, revealing little about abundance-impact relationships. We examined effects of increasing cover and volume of the non-native herbaceous groundcover Tradescantia fluminensis on a temperate rainforest community of southern Australia. We hypothesised that there would be critical thresholds in T. fluminensis abundance, below which the native plant community would not be significantly impacted, but above which the community's condition would degrade markedly. We modelled the abundance-impact relationship from 83 plots that varied in T. fluminensis abundance and landscape context and found the responses of almost all native plant indicators to invasion were non-linear. Native species richness, abundance and diversity exhibited negative exponential relationships with increasing T. fluminensis volume, but negative threshold relationships with increasing T. fluminensis cover. In the latter case, all metrics were relatively stable until cover reached between 20 and 30%, after which each decreased linearly, with a 50% decline occurring at 75-80% invader cover. Few growth forms (notably shrubs and climbers) exhibited such thresholds, with most exhibiting negative exponential relationships. Tradescantia fluminensis biomass increased dramatically at > 80% cover, with few native species able to persist at such high levels of invasion. Landscape context had almost no influence on native communities, or the abundance-impact relationships between T. fluminensis and the plant community metrics. Our results suggest that the diversity of native rainforest community can be maintained where T. fluminensis is present at moderate-to-low cover levels.


Subject(s)
Introduced Species , Rainforest , Tradescantia , Victoria
2.
Sci Rep ; 9(1): 4083, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858442

ABSTRACT

Effective control of an invasive species is frequently used to infer positive outcomes for the broader ecosystem. In many situations, whether the removal of an invasive plant is of net benefit to biodiversity is poorly assessed. We undertook a 10-year study on the effects of invasive shrub management (bitou bush, Chrysanthemoides monilifera ssp. rotundata) on native flora and fauna in a eucalypt forest in south-eastern Australia. Bitou bush eradication is a management priority, yet the optimal control regime (combination of herbicide spray and fire) is difficult to implement, meaning managed sites have complex management histories that vary in effectiveness of control. Here we test the long-term response of common biodiversity indicators (species richness, abundance and diversity of native plants, birds, herpetofauna and small mammals) to both the management, and the post-management status of bitou bush (% cover). While average bitou bush cover decreased with management, bitou bush consistently occurred at around half of our managed sites despite control efforts. The relationship between biodiversity and bitou bush cover following management differed from positive, neutral or negative among species groups and indicators. Native plant cover was lower under higher levels of bitou bush cover, but the abundance of birds and small mammals were positively related to bitou bush cover. Evidence suggests that the successful control of an invader may not necessarily result in beneficial outcomes for all components of biodiversity.


Subject(s)
Asteraceae/genetics , Biodiversity , Ecosystem , Introduced Species , Animals , Asteraceae/growth & development , Birds/physiology , Conservation of Natural Resources , Eucalyptus/genetics , Eucalyptus/growth & development , Fires , Herbicides/adverse effects , Humans , South Australia
3.
J Environ Manage ; 230: 94-101, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30273788

ABSTRACT

Decision triggers are defined thresholds in the status of monitored variables that indicate when to undertake management, and avoid undesirable ecosystem change. Decision triggers are frequently recommended to conservation practitioners as a tool to facilitate evidence-based management practices, but there has been limited attention paid to how practitioners are integrating decision triggers into existing monitoring programs. We sought to understand whether conservation practitioners' use of decision triggers was influenced by the type of variables in their monitoring programs. We investigated this question using a practitioner-focused workshop involving a structured discussion and review of eight monitoring programs. Among our case studies, direct measures of biodiversity (e.g. native species) were more commonly monitored, but less likely to be linked to decision triggers (10% with triggers) than measures being used as surrogates (54% with triggers) for program objectives. This was because decision triggers were associated with management of threatening processes, which were often monitored as a surrogate for a biodiversity asset of interest. By contrast, direct measures of biodiversity were more commonly associated with informal decision processes that led to activities such as management reviews or external consultation. Workshop participants were in favor of including more formalized decision triggers in their programs, but were limited by incomplete ecological knowledge, lack of appropriately skilled staff, funding constraints, and/or uncertainty regarding intervention effectiveness. We recommend that practitioners consider including decision triggers for discussion activities (such as external consultation) in their programs as more than just early warning points for future interventions, particularly for direct measures. Decision triggers for discussions should be recognized as a critical feature of monitoring programs where information and operational limitations inhibit the use of decision triggers for interventions.


Subject(s)
Biodiversity , Decision Making , Environmental Monitoring , Humans , Uncertainty
4.
Ecol Evol ; 8(10): 5188-5190, 2018 May.
Article in English | MEDLINE | ID: mdl-29876093

ABSTRACT

Linked Article: https://doi.org/10.1002/ece3.3966.

5.
Ecol Evol ; 7(19): 7628-7637, 2017 10.
Article in English | MEDLINE | ID: mdl-29043020

ABSTRACT

Positive interactions between exotic species may increase ecosystem-level impacts and potentially facilitate the entry and spread of other exotic species. Invader-facilitated invasion success-"secondary invasion"-is a key conceptual aspect of the well-known invasional meltdown hypothesis, but remains poorly defined and empirically underexplored. Drawing from heuristic models and published empirical studies, we explore this form of "secondary invasion" and discuss the phenomenon within the recognized conceptual framework of the determinants of invasion success. The term "secondary invasion" has been used haphazardly in the literature to refer to multiple invasion phenomena, most of which have other more accepted titles. Our usage of the term secondary invasion is akin to "invader-facilitated invasion," which we define as the phenomenon in which the invasion success of one exotic species is contingent on the presence, influence, and impacts of one or more other exotic species. We present case studies of secondary invasion whereby primary invaders facilitate the entry or establishment of exotic species into communities where they were previously excluded from becoming invasive. Our synthesis, discussion, and conceptual framework of this type of secondary invasion provides a useful reference to better explain how invasive species can alter key properties of recipient ecosystems that can ultimately determine the invasion success of other species. This study increases our appreciation for complex interactions following invasion and highlights the impacts of invasive species themselves as possible determinants of invasion success. We anticipate that highlighting "secondary invasion" in this way will enable studies reporting similar phenomena to be identified and linked through consistent terminology.

6.
Ecology ; 97(9): 2458-2469, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27859063

ABSTRACT

The entry of secondary invaders into, or their expansion within, native communities is contingent on the changes wrought by other (primary) invaders. When primary invaders have altered more than one property of the recipient community, standard descriptive and modeling approaches only provide a best guess of the mechanism permitting the secondary invasion. In rainforest on Christmas Island, we conducted a manipulative field experiment to determine the mechanism of invasion success for a community of land snails dominated by non-native species. The invasion of rainforest by the yellow crazy ant (Anoplolepis gracilipes) has facilitated these land snails, either by creating enemy-free space and/or increased habitat and resources (in the form of leaf litter) through the removal of the native omnivorous-detritivorous red land crab (Gecarcoidea natalis). We manipulated predator densities (high and low) and leaf litter (high and low) in replicated blocks of four treatment combinations at two sites. Over the course of one wet season (five months), we found that plots with high leaf litter biomass contained significantly more snails than those with low biomass, regardless of whether those plots had high or low predation pressure, at both the site where land crabs have always been abundant, and at the site where they have been absent for many years prior to the experiment. Each site was dominated by small snail species (<2 mm length), and through handling size and predation experiments we demonstrated that red crabs tend not to handle and eat snails of that size. These results suggest that secondary invasion by this community of non-native land snails is facilitated most strongly by habitat and resource augmentation, an indirect consequence of red land crab removal, and that the creation of enemy-free space is not important. By using a full-factorial experimental approach, we have confidently determined-rather than inferred-the mechanism by which primary invaders indirectly facilitate a community of secondary invaders.


Subject(s)
Ecosystem , Introduced Species , Animals , Ants , Australia , Brachyura , Snails
SELECTION OF CITATIONS
SEARCH DETAIL
...