Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Mol Ecol Resour ; : e13957, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576153

ABSTRACT

In coastal British Columbia, Canada, marine megafauna such as humpback whales (Megaptera novaeangliae) and fin whales (Balaenoptera physalus velifera) have been subject to a history of exploitation and near extirpation. While their populations have been in recovery, significant threats are posed to these vulnerable species by proposed natural resource ventures in this region, in addition to the compounding effects of anthropogenic climate change. Genetic tools play a vital role in informing conservation efforts, but the associated collection of tissue biopsy samples can be challenging for the investigators and disruptive to the ongoing behaviour of the targeted whales. Here, we evaluate a minimally intrusive approach based on collecting exhaled breath condensate, or respiratory 'blow' samples, from baleen whales using an unoccupied aerial system (UAS), within Gitga'at First Nation territory for conservation genetics. Minimal behavioural responses to the sampling technique were observed, with no response detected 87% of the time (of 112 UAS deployments). DNA from whale blow (n = 88 samples) was extracted, and DNA profiles consisting of 10 nuclear microsatellite loci, sex identification and mitochondrial (mt) DNA haplotypes were constructed. An average of 7.5 microsatellite loci per individual were successfully genotyped. The success rates for mtDNA and sex assignment were 80% and 89% respectively. Thus, this minimally intrusive sampling method can be used to describe genetic diversity and generate genetic profiles for individual identification. The results of this research demonstrate the potential of UAS-collected whale blow for conservation genetics from a remote location.

3.
PLoS One ; 16(9): e0256815, 2021.
Article in English | MEDLINE | ID: mdl-34478477

ABSTRACT

Fin whales (Balaenoptera physalus) are widely considered an offshore and oceanic species, but certain populations also use coastal areas and semi-enclosed seas. Based upon fifteen years of study, we report that Canadian Pacific fin whales (B. p. velifera) have returned to the Kitimat Fjord System (KFS) in the Great Bear Rainforest, and have established a seasonally resident population in its intracoastal waters. This is the only fjord system along this coast or elsewhere in which fin whales are known to occur regularly with strong site fidelity. The KFS was also the only Canadian Pacific fjord system in which fin whales were commonly found and killed during commercial whaling, pointing to its long-term importance. Traditional knowledge, whaling records, and citizen science databases suggest that fin whales were extirpated from this area prior to their return in 2005-2006. Visual surveys and mark-recapture analysis documented their repopulation of the area, with 100-120 whales using the fjord system in recent years, as well as the establishment of a seasonally resident population with annual return rates higher than 70%. Line transect surveys identified the central and outer channels of the KFS as the primary fin whale habitat, with the greatest densities occurring in Squally Channel and Caamaño Sound. Fin whales were observed in the KFS in most months of the year. Vessel- and shore-based surveys (27,311 km and 6,572 hours of effort, respectively) indicated regular fin whale presence (2,542 detections), including mother-calf pairs, from June to October and peak abundance in late August-early September. Seasonal patterns were variable year-to-year, and several lines of evidence indicated that fin whales arrived and departed from the KFS repeatedly throughout the summer and fall. Additionally, we report on the population's social network and morphometrics. These findings offer insights into the dynamics of population recovery in an area where several marine shipping projects are proposed. The fin whales of the Great Bear Rainforest represent a rare exception to general patterns in this species' natural history, and we highlight the importance of their conservation.


Subject(s)
Conservation of Energy Resources , Ecosystem , Fin Whale , Animals , Canada , Pacific Ocean
4.
PLoS One ; 16(6): e0245409, 2021.
Article in English | MEDLINE | ID: mdl-34161375

ABSTRACT

Animal culture and social bonds are relevant to wildlife conservation because they influence patterns of geography, behavior, and strategies of survival. Numerous examples of socially-driven habitat partitioning and ecological-niche specialization can be found among vertebrates, including toothed whales. But such social-ecological dynamics, described here as 'social niche partitioning', are not known among baleen whales, whose societies-particularly on foraging grounds-are largely perceived as unstructured and incidental to matters of habitat use and conservation. However, through 16 years of behavioral observations and photo-identifications of humpback whales (Megaptera novaeangliae) feeding within a fjord system in the Canadian Pacific (primarily within Gitga'at First Nation waters), we have documented long-term pair bonds (up to 12 years) as well as a complex societal structure, which corresponds closely to persistent patterns in feeding strategy, long-term site fidelity (extended occupancy and annual rate of return up to 75%), specific geographic preferences within the fjord system, and other forms of habitat use. Randomization tests of network congruency and clustering algorithms were used to test for overlap in patterns of social structure and habitat use, which confirmed the occurrence of social niche partitioning on the feeding grounds of this baleen whale species. In addition, we document the extensive practice of group bubble net feeding in Pacific Canada. This coordinated feeding behavior was found to strongly mediate the social structure and habitat use within this humpback whale society. Additionally, during our 2004-2019 study, we observed a shift in social network structure in 2010-2012, which corresponded with environmental and demographic shifts including a sudden decline in the population's calving rate. Our findings indicate that the social lives of humpback whales, and perhaps baleen whales generally, are more complex than previously supposed and should be a primary consideration in the assessment of potential impacts to important habitat.


Subject(s)
Behavior, Animal/physiology , Conservation of Natural Resources/methods , Humpback Whale/psychology , Animals , Canada , Cetacea/physiology , Cetacea/psychology , Ecosystem , Estuaries , Feeding Behavior/physiology , Feeding Behavior/psychology , Humpback Whale/physiology , Marine Biology/methods , Pacific Ocean , Psychological Distance , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...