Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Nano Mater ; 6(5): 3948-3962, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36938492

ABSTRACT

The current European (EU) policies, that is, the Green Deal, envisage safe and sustainable practices for chemicals, which include nanoforms (NFs), at the earliest stages of innovation. A theoretically safe and sustainable by design (SSbD) framework has been established from EU collaborative efforts toward the definition of quantitative criteria in each SSbD dimension, namely, the human and environmental safety dimension and the environmental, social, and economic sustainability dimensions. In this study, we target the safety dimension, and we demonstrate the journey toward quantitative intrinsic hazard criteria derived from findable, accessible, interoperable, and reusable data. Data were curated and merged for the development of new approach methodologies, that is, quantitative structure-activity relationship models based on regression and classification machine learning algorithms, with the intent to predict a hazard class. The models utilize system (i.e., hydrodynamic size and polydispersity index) and non-system (i.e., elemental composition and core size)-dependent nanoscale features in combination with biological in vitro attributes and experimental conditions for various silver NFs, functional antimicrobial textiles, and cosmetics applications. In a second step, interpretable rules (criteria) followed by a certainty factor were obtained by exploiting a Bayesian network structure crafted by expert reasoning. The probabilistic model shows a predictive capability of ≈78% (average accuracy across all hazard classes). In this work, we show how we shifted from the conceptualization of the SSbD framework toward the realistic implementation with pragmatic instances. This study reveals (i) quantitative intrinsic hazard criteria to be considered in the safety aspects during synthesis stage, (ii) the challenges within, and (iii) the future directions for the generation and distillation of such criteria that can feed SSbD paradigms. Specifically, the criteria can guide material engineers to synthesize NFs that are inherently safer from alternative nanoformulations, at the earliest stages of innovation, while the models enable a fast and cost-efficient in silico toxicological screening of previously synthesized and hypothetical scenarios of yet-to-be synthesized NFs.

2.
Micromachines (Basel) ; 10(2)2019 Jan 29.
Article in English | MEDLINE | ID: mdl-30700026

ABSTRACT

As the industry and commercial market move towards the optimization of printing and additive manufacturing, it becomes important to understand how to obtain the most from the materials while maintaining the ability to print complex geometries effectively. Combining such a manufacturing method with advanced carbon materials, such as Graphene, Carbon Nanotubes, and Carbon fibers, with their mechanical and conductive properties, delivers a cutting-edge combination of low-cost conductive products. Through the process of printing the effectiveness of these properties decreases. Thorough optimization is required to determine the idealized ink functional and flow properties to ensure maximum printability and functionalities offered by carbon nanoforms. The optimization of these properties then is limited by the printability. By determining the physical properties of printability and flow properties of the inks, calculated compromises can be made for the ink design. In this review we have discussed the connection between the rheology of carbon-based inks and the methodologies for maintaining the maximum pristine carbon material properties.

3.
J Therm Biol ; 79: 56-68, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30612686

ABSTRACT

Mobile phones have become an indispensable utility to modern society, with international use increasing dramatically each year. The GSM signal operates at 900 MHz, 1800 MHz and 2250 MHz, may potentially cause harm to human tissue. Yet there is no in silico model to aid design these devices to protect from causing potential thermal effect. Here we present a model of sources of heating in a mobile phone device with experimental verification during the phone call. We have developed this mobile phone thermal model using first principles on COMSOL® Multiphysics modelling platform to simulate heating effect in human auricle region due to mobile phone use. In particular, our model considered both radiative and non-radiative heating from components such as the lithium ion battery, CPU circuitry and the antenna. The model showed the distribution and effect of the heating effect due to mobile phone use and considered impact of battery discharge rate, battery capacity, battery cathode material, biological tissue distance, antenna radio-wave frequency and intensity. Furthermore, the lithium ion battery heating was validated during experiments using temperature sensors with an excellent agreement between simulated and experimental data (<1% variation). Mobile phone heating during a typical call has also been simulated and compared with experimental infrared thermographic imaging. Importantly, we found that 1800 MHz frequency of data transmission showed the highest temperature increase in the fat/water phantom used in this simulation. We also successfully compared heating distribution in human auricle region during mobile phone use with clinical thermographic images with reasonable qualitative and quantitative agreements. In summary, our model provides a foundation to conceive thermal and other physical effects caused by mobile phone use and allow for the understanding of potential negative health effects thus supporting and promoting personalized and preventive medicine using thermography.


Subject(s)
Cell Phone , Ear Auricle/physiology , Hot Temperature/adverse effects , Skin Temperature , Computer Simulation , Humans , Thermography
SELECTION OF CITATIONS
SEARCH DETAIL
...