Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 16(32): 17099-107, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25007378

ABSTRACT

Semiconductor sensitized solar cell interfaces have been studied with photoelectron spectroscopy to understand the interfacial electronic structures. In particular, the experimental energy level alignment has been determined for complete TiO2/metal sulfide/polymer interfaces. For the metal sulfides CdS, Sb2S3 and Bi2S3 deposited from single source metal xanthate precursors, it was shown that both driving forces for electron injection into TiO2 and hole transfer to the polymer decrease for narrower bandgaps. The energy level alignment results were used in the discussion of the function of solar cells with the same metal sulfides as light absorbers. For example Sb2S3 showed the most favourable energy level alignment with 0.3 eV driving force for electron injection and 0.4 eV driving force for hole transfer and also the most efficient solar cells due to high photocurrent generation. The energy level alignment of the TiO2/Bi2S3 interface on the other hand showed no driving force for electron injection to TiO2, and the performance of the corresponding solar cell was very low.

2.
Chemphyschem ; 15(6): 1019-23, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24596301

ABSTRACT

The fabrication of solution-processed nontoxic mesoporous Bi2S3 structures is demonstrated and the suitability of these structures for use in hybrid solar cells investigated. Mesoporous Bi2S3 electrodes are prepared via thermal decomposition of a thin film composed of a bismuth xanthate single source precursor. The resultant Bi2S3 films are made up of regular needles with approximate dimensions of 50×500 nm, as confirmed by scanning electron microscopy (SEM). The crystallinity of the Bi2S3 is found to be dependent on the annealing temperature, as determined by X-ray diffraction. The porous Bi2S3 films are infiltrated with the hole conductor P3HT to generate novel hybrid films, and laser-based transient absorption spectroscopy is used to interrogate the charge-separation reaction at the resulting Bi2S3/P3HT heterojunction. Specifically, optical excitation of the hybrid films results in efficient and long-lived charge separation (microsecond to millisecond timescale), thereby rendering such films suitable for the development of novel low-cost solar-energy conversion devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...