Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Org Process Res Dev ; 25(12): 2772-2785, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34955628

ABSTRACT

Generation of tosyl azide 12 in acetonitrile in flow under water-free conditions using an azide resin and its use in diazo transfer to a series of aryl acetates are described. Successful telescoping with a rhodium acetate-catalyzed O-H insertion has been achieved, thereby transforming the aryl acetate 8 to α-hydroxy ester 10, a key intermediate in the synthesis of clopidogrel 11, without requiring isolation or handling of either tosyl azide 12 or α-aryl-α-diazoacetate 9, or indeed having significant amounts of either present at any point. Significantly, the solution of α-diazo ester 9 was sufficiently clean to progress directly to the rhodium acetate-catalyzed step without any detrimental impact on the efficiency of the O-H insertion. In addition, the rhodium acetate-catalyzed O-H insertion process is cleaner in flow than under traditional batch conditions. Use of the azide resin offers clear safety advantages and, in addition, this approach complements earlier protocols for the generation of tosyl azide 12 in flow; this protocol is especially useful with less acidic substrates.

2.
Org Biomol Chem ; 14(13): 3423-31, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26959187

ABSTRACT

Heat and shock sensitive tosyl azide was generated and used on demand in a telescoped diazo transfer process. Small quantities of tosyl azide were accessed in a 'one pot' batch procedure using shelf stable, readily available reagents. For large scale diazo transfer reactions tosyl azide was generated and used in a telescoped flow process, to mitigate the risks associated with handling potentially explosive reagents on scale. The in situ formed tosyl azide was used to rapidly perform diazo transfer to a range of acceptors, including ß-ketoesters, ß-ketoamides, malonate esters and ß-ketosulfones. An effective in-line quench of sulfonyl azides was also developed, whereby a sacrificial acceptor molecule ensured complete consumption of any residual hazardous diazo transfer reagent. The telescoped diazo transfer process with in-line quenching was used to safely prepare over 21 g of an α-diazocarbonyl in >98% purity without any column chromatography.

SELECTION OF CITATIONS
SEARCH DETAIL
...