Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(22): 5883-5886, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38804862

ABSTRACT

Density functional theory calculated 14N hyperfine couplings are obtained for the Mn1 ligated π-N of residue His332 of the photosystem 2 water oxidizing complex. An open cubane, O4H, model closely matches the experimental coupling obtained for the high spin S = 5/2 form of the S2 state, supporting an open cubane structure for this state. We also investigate the unusual geometric features for the S2 state obtained by X-ray free electron laser structure determinations and rationalize it as an equilibrium occurring at room temperature between W1/O4 deprotonated and protonated forms of the open cubane structure.

2.
J Phys Chem Lett ; 15(2): 499-506, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38190694

ABSTRACT

Using BS-DFT (broken-symmetry density functional theory), the electronic and magnetic properties of the S3YZ• state of photosystem II were investigated and compared to those of the S3 state. While the O5 oxo-O6 hydroxo species presents little difference between the two states, a previously identified [O5O6]3- exhibits reduced stabilization of the O5-O6 shared spin. This species is shown to have some coupling with the YZ• center through Mn1 and O6. Similarly, a peroxo species is found to exhibit significant exchange couplings between the YZ• center and the Mn cluster through Mn1. Mechanistic changes in O-O bond formation in S3YZ• are highlighted by analysis of IBOs (intrinsic bonding orbitals) showing deviation for Mn1 and O6 centered IBOs. This change in coupling interactions throughout the complex as a result of S3YZ• formation presents implications for the determination of the mechanism spanning the end of the S3 and the start of the S4 states, affecting both electron movement and oxygen bond formation.

3.
Inorg Chem ; 62(40): 16401-16411, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37756478

ABSTRACT

[MFe3S4] cubanes have for some time been of interest for their ability to mimic the electronic and geometric structure of the active site of nitrogenase, the enzyme responsible for fixing N2 to NH3. Nitrogenase naturally occurs in three forms, with the major difference being that the metal ion present in the cofactor active site is either molybdenum (FeMoco), vanadium (FeVco), or iron. The molybdenum and vanadium versions of these cofactors are more closely studied, owing to their larger abundance and rate of catalysis. In this study, we compare free energy profiles and electronic properties of the Mo/V cubanes at various stages during the reduction of N2H4 to NH3. Our findings highlight the differences in how the complexes facilitate the reaction, in particular, vanadium's comparatively weaker ability to interact with the Fe/S network and stabilize reducing electrons prior to N-N bond cleavage, which may have implications when considering the lower efficiency of the vanadium-dependent nitrogenase.

4.
Inorg Chem ; 62(36): 14715-14726, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37650683

ABSTRACT

Nitrogenase is a fascinating enzyme in biology that reduces dinitrogen from air to ammonia through stepwise reduction and protonation. Despite it being studied in detail by experimental and computational groups, there are still many unknown factors in the catalytic cycle of nitrogenase, especially related to the addition of protons and electrons and their order. A recent biomimetic study characterized a potential dinitrogen-bridged diiron cluster as a synthetic model of nitrogenase. Using strong acid and reductants, the dinitrogen was converted into ammonia molecules, but details of the mechanism remains unknown. In particular, it was unclear from the experimental studies whether the proton and electron transfer steps are sequential or alternating. Moreover, the work failed to establish what the function of the diiron core is and whether it split into mononuclear iron fragments during the reaction. To understand the structure and reactivity of the biomimetic dinitrogen-bridged diiron complex [(P2P'PhFeH)2(µ-N2)] with triphenylphosphine ligands, we performed a density functional theory study. Our computational methods were validated against experimental crystal structure coordinates, Mössbauer parameters, and vibrational frequencies and show excellent agreement. Subsequently, we investigated the alternating and consecutive addition of electrons and protons to the system. The calculations identify a number of possible reaction channels, namely, same-site protonation, alternating protonation, and complex dissociation into mononuclear iron centers. The calculations show that the overall mechanism is not a pure sequential set of electron and proton transfers but a mixture of alternating and consecutive steps. In particular, the first reaction steps will start with double proton transfer followed by an electron transfer, while thereafter, there is another proton transfer and a second electron transfer to give a complex whereby ammonia can split off with a low energetic barrier. The second channel starts with alternating protonation of the two nitrogen atoms, whereafter the initial double proton transfer, electrons and protons are added sequentially to form a hydrazine-bound complex. The latter split off ammonia spontaneously after further protonation. The various reaction channels are analyzed with valence bond and orbital diagrams. We anticipate the nitrogenase enzyme to operate with mixed alternating and consecutive protonation and electron transfer steps.


Subject(s)
Ammonia , Protons , Iron , Nitrogen , Nitrogenase
5.
ACS Omega ; 7(45): 41783-41788, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406523

ABSTRACT

ELDOR-detected nuclear magnetic resonance (EDNMR) spectral simulations combined with broken-symmetry density functional theory (BS-DFT) calculations are used to obtain and to assign the 55Mn hyperfine coupling constants (hfcs) for modified forms of the water oxidizing complex in the penultimate S3 state of the water oxidation cycle. The study shows that an open cubane form of the core Mn4CaO6 cluster explains the magnetic properties of the dominant S = 3 species in all cases studied experimentally with no need to invoke a closed cubane intermediate possessing a distorted pentacoordinate Mn4 ion as recently suggested. EDNMR simulations found that both the experimental bandwidth and multinuclear transitions may alter relative EDNMR peak intensities, potentially leading to incorrect assignment of hfcs. The implications of these findings for the water oxidation mechanism are discussed.

6.
J Phys Chem B ; 126(41): 8214-8221, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36206029

ABSTRACT

In this paper, we combine broken symmetry density functional calculations and electron paramagnetic resonance analysis to obtain the electronic structure of the penultimate S3 state of nature's water-oxidizing complex and determine the electronic pathway of O-O bond formation. Analysis of the electronic structure changes along the reaction path shows that two spin crossovers, facilitated by the geometry and magnetism of the water-oxidizing complex, are used to provide a unique low-energy pathway. The pathway is facilitated via the formation and stabilization of the [O2]3- ion. This ion is formed between ligated deprotonated substrate waters, O5 and O6, and is stabilized by antiferromagnetic interaction with the Mn ions of the complex. Combining the computational, crystallographic, and spectroscopic data, we show that an equilibrium exists between the O5 oxo and O6 hydroxo forms with an S = 3 spin state and a deprotonated O6 form containing a two-center one-electron bond in [O5O6]3- which we identify as the form detected using crystallography. This form corresponds to an S = 6 spin state which we demonstrate gives rise to a low-intensity EPR spectrum compared with the accompanying S = 3 state, making its detection via EPR difficult and overshadowed by the S = 3 form. Simulations using 70% of the S = 6 component give rise to a superior fit to the experimental W-band EPR spectral envelope compared with an S = 3 only form. Analyses of the most recent X-ray emission spectroscopy first moment changes for solution and time-resolved crystal data are also shown to support the model. The computational, crystallographic, and spectroscopic data are shown to coalesce to the same picture of a predominant S = 6 species containing the first one-electron oxidation product of two water molecules, that is, [O5O6]3-. Progression of this form to the two-electron-oxidized peroxo and three-electron-oxidized superoxo forms, leading eventually to the evolution of triplet O2, is proposed to be the pathway nature adopts to oxidize water. The study reveals the key electronic, magnetic, and structural design features of nature's catalyst which facilitates water oxidation to O2 under ambient conditions.


Subject(s)
Photosystem II Protein Complex , Water , Water/chemistry , Photosystem II Protein Complex/chemistry , Photosynthesis , Oxidation-Reduction , Electron Spin Resonance Spectroscopy/methods , Ions , Electronics , Oxygen/chemistry
7.
J Phys Chem B ; 125(36): 10097-10107, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34463499

ABSTRACT

Broken symmetry density functional theory (BS-DFT) calculations on large models of Nature's water oxidizing complex (WOC) are used to investigate the electronic structure and associated magnetic interactions of this key intermediate state. The electronic origins of the ferromagnetic and antiferromagnetic couplings between neighboring Mn ions are investigated and illustrated by using corresponding orbital transformations. Protonation of the O4 and/or O6 atoms leads to large variation in the distribution of spin around the complex with associated changes in its magnetic resonance properties. Models for Sr2+ exchange and methanol addition indicate minor perturbations reflected in slightly altered spin projection coefficients for the Mn1 and Mn2 ions. These are shown to account for the observed changes observed experimentally via electron paramagnetic resonance methods and suggest a reinterpretation of the experimental findings. By comparison with experimental determinations, we show that the spin projections and resulting calculated 55Mn hyperfine couplings support the open cubane form of an oxo (O5)-hydroxo (O6) cluster in all cases with no need to invoke a closed cubane intermediate. The implications of these findings for the water oxidation mechanism are discussed.


Subject(s)
Photosystem II Protein Complex , Water , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Oxygen , Photosystem II Protein Complex/metabolism
8.
J Phys Chem B ; 125(26): 7147-7154, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34180671

ABSTRACT

The nature of the bonding and magnetic exchange pathways of the water-oxidizing complex of photosystem 2 is explored using broken symmetry density functional theory. The electronic structure and superexchange pathways are illustrated and analyzed using corresponding orbitals and intrinsic bond orbitals. These demonstrate a dominating influence on the bonding and magnetic interactions by both the geometrical structure of the Mn4CaO5 core complex and the ionic interactions of the oxo bridges with the neighboring Ca2+ ion. The demonstrated ionic nature of the Ca2+ bonds is proposed to contribute to the stabilization of the oxygen atoms participating in O-O bond formation.


Subject(s)
Photosystem II Protein Complex , Water , Magnetic Phenomena , Oxidation-Reduction , Oxygen , Photosystem II Protein Complex/metabolism
9.
J Phys Chem A ; 124(47): 9771-9776, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33180494

ABSTRACT

A localized bond orbital analysis of the bonding in dioxygen and related species provides a unique fundamental insight into its bonding characteristics. It reveals the coalescence of the molecular orbital and valence bond/Lewis approaches and clearly demonstrates that the often stated inability of valence bond theory to describe the bonding of O2 is a myth. The analysis indicates that the σ-bond strength of 3O2 is not weak as previously believed and accounts for much of its enhanced stability compared with hydroperoxyl. We attribute the stability and persistence of 3O2 to a combination of this attribute and favorable maximization of exchange coupling between the valence electrons.

10.
J Am Chem Soc ; 142(23): 10240-10243, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32431144

ABSTRACT

The identity of a key intermediate in the S2 to S3 transition of nature's water-oxidizing complex (WOC) in Photosystem 2 is presented. Broken-symmetry density functional theory (BS-DFT) calculations and Heisenberg-Dirac-van Vleck (HDvV) spin ladder calculations show that an S2 state open cubane model of the WOC containing a µ-hydroxo O4 changes from an S = 5/2 form to an S = 7/2, form upon deprotonation of W1. Combined with X-band electron paramagnetic resonance (EPR) spectral analysis, this indicates that the g = 4.1 EPR signal corresponds to an S = 5/2 form of the WOC with W1 present as a water ligand to Mn4, while the g = 4.8/4.9 form observed at high pH values corresponds to an S = 7/2 form, with W1 as a hydroxo ligand. The latter is also likely to represent the form needed to progress to S3 in the functioning enzyme.

11.
J Phys Chem Lett ; 11(10): 4221-4225, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32374174

ABSTRACT

The crucial O-O bond forming step in the water oxidizing complex (WOC) of photosystem II is modeled using density functional theory calculations and compared with structural X-ray free electron laser (XFEL) determinations for the penultimate S3 state. Concerted electron flow between the Mn4O5 and Mn1O6 bonds of the complex and the nascent O-O bond is monitored using intrinsic bond orbital analysis along the reaction path. Concerted transfer to Mn1 and Mn4 of two electrons from the reactant oxos, O5 and O6, resulting in an unoccupied antibonding σ2p* orbital is the key to low barrier O-O bond formation. The potential energy surface for O-O bond formation shows a rather broad energy minimum for the oxo-oxo form ranging from 2.4-2.0 Å which may explain the relatively short O5-O6 bond distance reported in experimental structure studies. Alternatively the short O5-O6 bond distance may reflect a dynamic equilibrium model across the whole O-O potential energy surface.

12.
J Phys Chem Lett ; 10(17): 5226-5230, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31429574

ABSTRACT

A new paradigm for the high- and low-spin forms of the S2 state of nature's water-oxidizing complex in Photosystem II is found. Broken symmetry density functional theory calculations combined with Heisenberg-Dirac-van Vleck spin ladder calculations show that an open cubane form of the water-oxidizing complex changes from a low-spin, S = 1/2, to a high-spin, S = 5/2, form on protonation of the bridging O4 oxo. We show that such models are fully compatible with structural determinations of the S2 state by X-ray free-electron laser crystallography and extended X-ray absorption fine structure and provide a clear rationale for the effect of various treatments on the relative populations of each form observed experimentally in electron paramagnetic resonance studies.

13.
J Phys Chem Lett ; 9(21): 6269-6274, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30336040

ABSTRACT

A novel mechanism for the final stages of Nature's photosynthetic water oxidation to molecular oxygen is proposed. This is based on a comparison of experimental and broken symmetry density functional theory (BS-DFT) calculated geometries and magnetic resonance properties of water oxidizing complex models in the final metastable oxidation state, S3. We show that peroxo models of the S3 state are in vastly superior agreement with the current experimental structural determinations compared with oxo-hydroxo models. Comparison of experimental and BS-DFT calculated 55Mn hyperfine couplings for the electron paramagnetic resonance (EPR) visible form shows better agreement for the oxo-hydroxo model. An equilibrium between oxo-hydroxo and peroxo models is proposed for the S3 state and the major implications for the final steps in the water oxidation mechanism are analyzed and discussed.

14.
J Phys Chem B ; 122(11): 2881-2890, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29470911

ABSTRACT

Broken symmetry density functional theory has been used to calculate g-tensor, 55Mn, 14N, and 17O hyperfine couplings for active site models of superoxidized MnIII/MnIV manganese catalase both in its native and azide-inhibited form. While a good agreement is found between the calculated and experimental g-tensor and 55Mn hyperfine couplings for all models, the active site geometry and Mn ion oxidation state can only be readily distinguished based on a comparison of the calculated and experimental 14N azide and 17O HFCs. This comparison shows that only models containing a Jahn-Teller distorted 5-coordinate (MnIII)2 site and a 6-coordinate (MnIV)1 site can satisfactorily reproduce the experimental 14N and 17O hyperfine couplings.


Subject(s)
Catalase/metabolism , Electron Spin Resonance Spectroscopy , Manganese/metabolism , Quantum Theory , Superoxides/metabolism , Binding Sites , Catalase/chemistry , Catalase/isolation & purification , Lactobacillus plantarum/enzymology , Manganese/chemistry , Models, Molecular , Superoxides/chemistry , Thermus thermophilus/enzymology
15.
J Phys Chem B ; 122(4): 1394-1407, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29300480

ABSTRACT

A broken symmetry density functional theory (BS-DFT) magnetic analysis of the S2, S2YZ•, and S3 states of Nature's oxygen evolving complex is performed for both the native Ca and Sr substituted forms. Good agreement with experiment is observed between the tyrosyl calculated g-tensor and 1H hyperfine couplings for the native Ca form. Changes in the hydrogen bonding environment of the tyrosyl radical in S2YZ• caused by Sr substitution lead to notable changes in the calculated g-tensor of the tyrosyl radical. Comparison of calculated and experimental 55Mn hyperfine couplings for the S3 state presently favors an open cubane form of the complex with an additional OH ligand coordinating to MnD. In Ca models, this additional ligation can arise by closed-cubane form deprotonation of the Ca ligand W3 in the S2YZ• state accompanied by spontaneous movement to the vacant Mn coordination site or by addition of an external OH group. For the Sr form, no spontaneous movement of W3 to the vacant Mn coordination site is observed in contrast to the native Ca form, a difference which may lead to the reduced catalytic activity of the Sr substituted form. BS-DFT studies on peroxo models of S3 as indicated by a recent X-ray free electron laser (XFEL) crystallography study give rise to a structural model compatible with experimental data and an S = 3 ground state compatible with EPR studies.

16.
J Phys Chem B ; 121(50): 11273-11283, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29179554

ABSTRACT

A comparison between experimental and Broken Symmetry Density Functional theory (BS-DFT) calculated hyperfine couplings for the S2 state of the oxygen-evolving complex (OEC) has been performed. The effect of Ca substitution by Sr combined with the protonation state of two terminal hydroxo or aqua ligands, W1 and W2, on the calculated hyperfine couplings of 55Mn, 13C, 14N, 17O, and 1H nuclei has been investigated. Our findings show best agreement with experiment for OEC models which contain a hydroxide group at the W2 position and a water molecule at W1. For this model the agreement between calculated and experimental data for all hyperfine couplings is excellent. Models with a hydroxide group at W1 are particularly poor models. Sr substitution has a minor influence on calculated hyperfine couplings in agreement with experimental determinations. The sensitivity of the hyperfine couplings to relatively minor changes in the OEC structure demonstrates the power of this methodology in refining the details of its steric and electronic structure which is an essential step in formulating a complete mechanism for water oxidation by the OEC.


Subject(s)
Calcium/metabolism , Oxygen/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Quantum Theory , Strontium/metabolism , Electron Spin Resonance Spectroscopy
17.
J Phys Chem B ; 121(44): 10256-10268, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29035062

ABSTRACT

Determining the complete electron spin density distribution for protein-bound radicals, even with advanced pulsed electron paramagnetic resonance (EPR) methods, is a formidable task. Here we present a strategy to overcome this problem combining multifrequency HYSCORE and ENDOR measurements on site-specifically 13C-labeled samples with DFT calculations on model systems. As a demonstration of this approach, pulsed EPR experiments are performed on the primary QA and secondary QB ubisemiquinones of the photosynthetic reaction center from Rhodobacter sphaeroides 13C-labeled at the ring and tail positions. Despite the large number of nuclei interacting with the unpaired electron in these samples, two-dimensional X- and Q-band HYSCORE and orientation selective Q-band ENDOR resolve and allow for a characterization of the eight expected 13C resonances from significantly different hyperfine tensors for both semiquinones. From these results we construct, for the first time, the most complete experimentally determined maps of the s- and pπ-orbital spin density distributions for any protein organic cofactor radical to date. This work lays a foundation for understanding the relationship between the electronic structure of semiquinones and their functional properties, and introduces new techniques for mapping out the spin density distribution that are readily applicable to other systems.


Subject(s)
Photosynthetic Reaction Center Complex Proteins/analysis , Quantum Theory , Carbon Isotopes , Electron Spin Resonance Spectroscopy , Free Radicals/analysis , Free Radicals/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Rhodobacter sphaeroides/chemistry
18.
Biochemistry ; 55(40): 5714-5725, 2016 Oct 11.
Article in English | MEDLINE | ID: mdl-27622672

ABSTRACT

The respiratory cytochrome bo3 ubiquinol oxidase from Escherichia coli has a high-affinity ubiquinone binding site that stabilizes the one-electron reduced ubisemiquinone (SQH), which is a transient intermediate during the electron-mediated reduction of O2 to water. It is known that SQH is stabilized by two strong hydrogen bonds from R71 and D75 to ubiquinone carbonyl oxygen O1 and weak hydrogen bonds from H98 and Q101 to O4. In this work, SQH was investigated with orientation-selective Q-band (∼34 GHz) pulsed 1H electron-nuclear double resonance (ENDOR) spectroscopy on fully deuterated cytochrome (cyt) bo3 in a H2O solvent so that only exchangeable protons contribute to the observed ENDOR spectra. Simulations of the experimental ENDOR spectra provided the principal values and directions of the hyperfine (hfi) tensors for the two strongly coupled H-bond protons (H1 and H2). For H1, the largest principal component of the proton anisotropic hfi tensor Tz' = 11.8 MHz, whereas for H2, Tz' = 8.6 MHz. Remarkably, the data show that the direction of the H1 H-bond is nearly perpendicular to the quinone plane (∼70° out of plane). The orientation of the second strong hydrogen bond, H2, is out of plane by ∼25°. Equilibrium molecular dynamics simulations on a membrane-embedded model of the cyt bo3 QH site show that these H-bond orientations are plausible but do not distinguish which H-bond, from R71 or D75, is nearly perpendicular to the quinone ring. Density functional theory calculations support the idea that the distances and geometries of the H-bonds to the ubiquinone carbonyl oxygens, along with the measured proton anisotropic hfi couplings, are most compatible with an anionic (deprotonated) ubisemiquinone.


Subject(s)
Cytochromes/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Ubiquinone/analogs & derivatives , Anions , Cytochrome b Group , Electron Spin Resonance Spectroscopy , Electrons , Hydrogen Bonding , Molecular Dynamics Simulation , Ubiquinone/chemistry
19.
J Am Chem Soc ; 138(13): 4358-61, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27007277

ABSTRACT

The oxidation state assignment of the manganese ions present in the superoxidized manganese (III/IV) catalase active site is determined by comparing experimental and broken symmetry density functional theory calculated (14)N, (17)O, and (1)H hyperfine couplings. Experimental results have been interpreted to indicate that the substrate water is coordinated to the Mn(III) ion. However, by calculating hyperfine couplings for both scenarios we show that water is coordinated to the Mn(IV) ion and that the assigned oxidation states of the two manganese ions present in the site are the opposite of that previously proposed based on experimental measurements alone.


Subject(s)
Catalase/metabolism , Manganese Compounds/chemistry , Manganese/chemistry , Oxides/chemistry , Catalytic Domain , Electron Spin Resonance Spectroscopy , Nitrogen/chemistry , Oxidation-Reduction , Photosystem II Protein Complex/chemistry , Thermus thermophilus/metabolism , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...