Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
2.
Mol Pharmacol ; 33(2): 170-7, 1988 Feb.
Article in English | MEDLINE | ID: mdl-2828912

ABSTRACT

The properties of [125I]beta h-endorphin-binding sites from rat brain membranes and membranes from the NG108-15 cell line were compared using a monoclonal antibody directed against the opioid receptor and opioid peptides as probes. The binding of [125I]beta h-endorphin to both rat brain and NG108-15 membranes yielded linear Scatchard plots with Kd values of 1.2 nM and 1.5 nM, respectively, and Bmax values of 865 fmol/mg rat brain membrane protein and 1077 fmol/mg NG108-15 membrane protein. A monoclonal antibody, OR-689.2.4, capable of inhibiting mu and delta binding but not kappa binding to rat brain membranes, noncompetitively inhibited the binding of 1 nM [125I]beta h-endorphin to rat brain and NG108-15 membranes with an IC50 value of 405 nM for rat brain membranes and 543 nM for NG108-15 membranes. The monoclonal antibody also inhibited the binding of 3 nM [3H] [D-penicillamine2, D-penicillamine5] enkephalin to NG108-15 membranes with an IC50 value of 370 nM. In addition to blocking the binding of [125I]beta h-endorphin to brain membranes, the antibody also displaced [125I]beta h-endorphin from membranes. Site-specific opioid peptides had large variations in their IC50 values depending on whether they were inhibiting [125I]beta h-endorphin binding to rat brain or the NG108-15 membranes. When the peptides were tested with the monoclonal antibody for their combined ability to inhibit [125I]beta h-endorphin binding to both membrane preparations, the peptides and antibody blocked binding as though they were acting at allosterically coupled sites, not two totally independent sites. These studies suggest that mu-, delta-, and beta-endorphin-binding sites share some sequence homology with the 35,000-dalton protein that the antibody is directed against.


Subject(s)
Antibodies, Monoclonal/immunology , Brain/metabolism , Receptors, Opioid/metabolism , beta-Endorphin/metabolism , Animals , Enkephalin, Ala(2)-MePhe(4)-Gly(5)- , Enkephalin, D-Penicillamine (2,5)- , Enkephalin, Leucine/analogs & derivatives , Enkephalin, Leucine/pharmacology , Enkephalin, Leucine-2-Alanine , Enkephalins/metabolism , Enkephalins/pharmacology , Glioma , Immunoglobulin M/pharmacology , In Vitro Techniques , Iodine Radioisotopes , Male , Molecular Weight , Neuroblastoma , Rats , Rats, Inbred Strains , Receptors, Opioid, delta , Receptors, Opioid, mu , Tumor Cells, Cultured/metabolism
3.
J Biol Chem ; 261(34): 15844-9, 1986 Dec 05.
Article in English | MEDLINE | ID: mdl-3023329

ABSTRACT

Fab fragments from a monoclonal antibody, OR-689.2.4, directed against the opioid receptor, selectively inhibited opioid binding to rat and guinea pig neural membranes. In a titratable manner, the Fab fragments noncompetitively inhibited the binding of the mu selective peptide [D-Ala2,(Me)Phe4,Gly(OH)5][3H] enkephalin and the delta selective peptide [D-Pen2,D-Pen5] [3H]enkephalin (where Pen represents penicillamine) to neural membranes. In contrast, kappa opioid binding, as measured by the binding of [3H]bremazocine to rat neural membranes and guinea pig cerebellum in the presence of mu and delta blockers, was not significantly altered by the Fab fragments. In addition to blocking the binding of mu and delta ligands, the Fab fragments displaced bound opioids from the membranes. When mu sites were blocked with [D-Ala2,(Me)Phe4,Gly(OH)5]enkephalin, the Fab fragments suppressed the binding of [D-Pen2,D-Pen5][3H]enkephalin to the same degree as when the mu binding site was not blocked. The Fab fragments also inhibited binding to the mu site regardless of whether or not the delta site was blocked with [D-Pen2,D-Pen5]enkephalin. This monoclonal antibody is directed against a 35,000-dalton protein. Since the antibody is able to inhibit mu and delta binding but not kappa opioid binding, it appears that this 35,000-dalton protein is an integral component of mu and delta opioid receptors but not kappa receptors.


Subject(s)
Antibodies, Monoclonal/immunology , Immunoglobulin Fab Fragments/immunology , Receptors, Opioid/metabolism , Animals , Benzomorphans/metabolism , Brain/metabolism , Enkephalin, Ala(2)-MePhe(4)-Gly(5)- , Enkephalin, D-Penicillamine (2,5)- , Enkephalins/metabolism , Guinea Pigs , In Vitro Techniques , Ligands , Male , Rats , Rats, Inbred Strains , Receptors, Opioid/immunology , Receptors, Opioid, delta , Receptors, Opioid, kappa , Receptors, Opioid, mu
SELECTION OF CITATIONS
SEARCH DETAIL