Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 127(1): 289-299, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-37342618

ABSTRACT

Enzymes with multiple distinct active sites linked by substrate channels combined with control over the solution environment near the active sites enable the formation of complex products from simple reactants via the confinement of intermediates. We mimic this concept to facilitate the electrochemical carbon dioxide reduction reaction using nanoparticles with a core that produces intermediate CO at different rates and a porous copper shell. CO2 reacts at the core to produce CO which then diffuses through the Cu to give higher order hydrocarbon molecules. By altering the rate of CO2 delivery, the activity of the CO producing site, and the applied potential, we show that the nanoparticle with lower activity for CO formation produces greater amounts of hydrocarbon products. This is attributed to a combination of higher local pH and the lower amount of CO, resulting in more stable nanoparticles. However, when lower amounts of CO2 were delivered to the core, the particles that are more active for CO formation produce more C3 products. The importance of these results is twofold. They show that in cascade reactions, more active intermediate producing catalysts do not necessarily give greater amounts of high-value products. The effect an intermediate producing active site has on the local solution environment around the secondary active site plays an important role. As the less active catalyst for producing CO also possesses greater stability, we show that nanoconfinement can be used to get the best of both worlds with regard to having a stable catalyst with high activity.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35745304

ABSTRACT

This study investigated the fluorescence and biocompatibility of hydrophilic silicon quantum dots (SiQDs) that are doped with scandium (Sc-SiQDs), copper (Cu-SiQDs), and zinc (Zn-SiQDs), indicating their feasibility for the bioimaging of tear film. SiQDs were investigated for fluorescence emission by the in vitro imaging of artificial tears (TheraTears®), using an optical imaging system. A trypan blue exclusion test and MTT assay were used to evaluate the cytotoxicity of SiQDs to cultured human corneal epithelial cells. No difference was observed between the fluorescence emission of Sc-SiQDs and Cu-SiQDs at any concentration. On average, SiQDs showed stable fluorescence, while Sc-SiQDs and Cu-SiQDs showed brighter fluorescence emissions than Zn-SiQDs. Cu-SiQDs and Sc-SiQDs showed a broader safe concentration range than Zn-SiQDs. Cu-SiQDs and Zn-SiQDs tend to aggregate more substantially in TheraTears® than Sc-SiQDs. This study elucidates the feasibility of hydrophilic Sc-SiQDs in studying the tear film's aqueous layer.

3.
Chem Sci ; 12(11): 4028-4033, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-34163673

ABSTRACT

Cu-based catalysts have shown structural instability during the electrochemical CO2 reduction reaction (CO2RR). However, studies on monometallic Cu catalysts do not allow a nuanced differentiation between the contribution of the applied potential and the local concentration of CO as the reaction intermediate since both are inevitably linked. We first use bimetallic Ag-core/porous Cu-shell nanoparticles, which utilise nanoconfinement to generate high local CO concentrations at the Ag core at potentials at which the Cu shell is still inactive for the CO2RR. Using operando liquid cell TEM in combination with ex situ TEM, we can unequivocally confirm that the local CO concentration is the main source for the Cu instability. The local CO concentration is then modulated by replacing the Ag-core with a Pd-core which further confirms the role of high local CO concentrations. Product quantification during CO2RR reveals an inherent trade-off between stability, selectivity and activity in both systems.

4.
ChemElectroChem ; 8(24): 4848-4853, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-35909946

ABSTRACT

Bimetallic silver-copper electrocatalysts are promising materials for electrochemical CO2 reduction reaction (CO2RR) to fuels and multi-carbon molecules. Here, we combine Ag core/porous Cu shell particles, which entrap reaction intermediates and thus facilitate the formation of C2+ products at low overpotentials, with gas diffusion electrodes (GDE). Mass transport plays a crucial role in the product selectivity in CO2RR. Conventional H-cell configurations suffer from limited CO2 diffusion to the reaction zone, thus decreasing the rate of the CO2RR. In contrast, in the case of GDE-based cells, the CO2RR takes place under enhanced mass transport conditions. Hence, investigation of the Ag core/porous Cu shell particles at the same potentials under different mass transport regimes reveals: (i) a variation of product distribution including C3 products, and (ii) a significant change in the local OH- activity under operation.

5.
J Am Chem Soc ; 141(36): 14093-14097, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31448598

ABSTRACT

Enzymes can perform complex multistep cascade reactions by linking multiple distinct catalytic sites via substrate channeling. We mimic this feature in a generalized approach with an electrocatalytic nanoparticle for the carbon dioxide reduction reaction comprising a Ag core surrounded by a porous Cu shell, providing different active sites in nanoconfined volumes. The architecture of the nanozyme provides the basis for a cascade reaction, which promotes C-C coupling reactions. The first step occurs on the Ag core, and the subsequent steps on the porous copper shell, where a sufficiently high CO concentration due to the nanoconfinement facilitates C-C bond formation. The architecture yields the formation of n-propanol and propionaldehyde at potentials as low as -0.6 V vs RHE.

6.
J Biomed Opt ; 22(8): 1-7, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28836415

ABSTRACT

Herein is presented a proof-of-concept study of protease sensing that combines nontoxic silicon quantum dots (SiQDs) with Förster resonance energy transfer (FRET). The SiQDs serve as the donor and an organic dye as the acceptor. The dye is covalently attached to the SiQDs using a peptide linker. Enzymatic cleavage of the peptide leads to changes in FRET efficiency. The combination of interfacial design and optical imaging presented in this work opens opportunities for use of nontoxic SiQDs relevant to intracellular sensing and imaging.


Subject(s)
Biosensing Techniques/instrumentation , Peptide Hydrolases/analysis , Quantum Dots , Silicon , Fluorescence Resonance Energy Transfer , Quantum Dots/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...