Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 10218, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860642

ABSTRACT

In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.

2.
Environ Pollut ; 157(6): 1849-56, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19246140

ABSTRACT

Raman spectroscopy was used to investigate sorption mechanisms of cephapirin (CHP), a veterinary antibiotic, onto quartz (SiO(2)) and feldspar (KAlSi(3)O(8)) at different pH. Sorption occurs by electrostatic attraction, monodentate and bidentate complexation. The zwitterion (CHP(o)) adsorbs to a quartz((+)) surface by electrostatic attraction of the carboxylate anion group (-COO(-)) at low pH, but adsorbs to a quartz((-)) surface through electrostatic attraction of the pyridinium cation, and possibly COO(-) bridge complexes, at higher pH. CHP(-) bonds to quartz((-)) surfaces by bidentate complexation between one oxygen of -COO(-) and oxygen from carbonyl of an acetoxymethyl group. On a feldspar((+/-)) surface, CHP(o) forms monodentate complexes between CO, and possible -COO(-) bridges and/or electrostatic attachments to localized edge (hydr)oxy-Al surfaces. CHP(-) adsorbs to feldspar((-)) through monodentate CO complexation. Similar mechanisms may operate for other cephalosporins. Results demonstrate, for the first time, that Raman techniques can be effective for evaluating sorption mechanisms of antibiotics.


Subject(s)
Anti-Bacterial Agents/analysis , Cephapirin/analysis , Environmental Pollutants/analysis , Veterinary Drugs/analysis , Adsorption , Aluminum Silicates , Ecotoxicology/methods , Hydrogen-Ion Concentration , Potassium Compounds , Quartz , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...