Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Eye Res ; 218: 108966, 2022 05.
Article in English | MEDLINE | ID: mdl-35143834

ABSTRACT

Visual deficits after ocular blast injury (OBI) are common, but pharmacological approaches to improve long-term outcomes have not been identified. Blast forces frequently damage the retina and optic nerves, and work on experimental animals has shown the pro-inflammatory actions of microglia can further exacerbate such injuries. Cannabinoid type-2 receptor (CB2) inverse agonists specifically target activated microglia, biasing them away from the harmful pro-inflammatory M1 state toward the helpful reparative M2 state. We previously found that treating mice with CB2 inverse agonists after traumatic brain injury, produced by either focal cranial air blast or dorsal cranial impact, greatly attenuated the visual deficits and pathology that otherwise resulted. Here we examined the consequences of single and repeat OBI and the benefit provided by raloxifene, an FDA-approved estrogen receptor drug that possesses noteworthy CB2 inverse agonism. After single OBI, although the amplitudes of the A- and B-waves of the electroretinogram and pupil light response appeared to be normal, the mice showed hints of deficits in contrast sensitivity and visual acuity, a trend toward optic nerve axon loss, and significantly increased light aversion, which were reversed by 2 weeks of daily treatment with raloxifene. Mice subjected to repeat OBI (5 blasts spaced 1 min apart), exhibited more severe visual deficits, including decreases in contrast sensitivity, visual acuity, the amplitudes of the A- and B-waves of the electroretinogram, light aversion, and resting pupil diameter (i.e. hyperconstriction), accompanied by the loss of photoreceptor cells and optic nerve axons, nearly all of which were mitigated by raloxifene. Interestingly, optic nerve axon abundance was strongly correlated with contrast sensitivity and visual acuity across all groups of experimental mice in the repeat OBI study, suggesting optic nerve axon loss with repeat OBI and its attenuation with raloxifene are associated with the extent of these two deficits while photoreceptor abundance was highly correlated with A-wave amplitude and resting pupil size, suggesting a prominent role for photoreceptors in these two deficits. Quantitative PCR (qPCR) showed levels of M1-type microglial markers (e.g. iNOS, IL1ß, TNFα, and CD32) in retina, optic nerve, and thalamus were increased 3 days after repeat OBI. With raloxifene treatment, the overall expression of M1 markers was more similar to that in sham mice. Raloxifene treatment was also associated with the elevation of IL10 transcripts in all three tissues compared to repeat OBI alone, but the results for the three other M2 microglial markers we examined were more varied. Taken together, the qPCR results suggest that raloxifene benefit for visual function and pathology was associated with a lessening of the pro-inflammatory actions of microglia. The benefit we find for raloxifene following OBI provides a strong basis for phase-2 efficacy testing in human clinical trials for treating ocular injury.


Subject(s)
Blast Injuries , Cannabinoids , Eye Injuries , Animals , Blast Injuries/metabolism , Cannabinoid Receptor Agonists , Eye Injuries/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Raloxifene Hydrochloride/metabolism , Raloxifene Hydrochloride/pharmacology , Raloxifene Hydrochloride/therapeutic use
2.
Front Neurosci ; 15: 701317, 2021.
Article in English | MEDLINE | ID: mdl-34776838

ABSTRACT

Mild traumatic brain injury (TBI) involves widespread axonal injury and activation of microglia, which initiates secondary processes that worsen the TBI outcome. The upregulation of cannabinoid type-2 receptors (CB2) when microglia become activated allows CB2-binding drugs to selectively target microglia. CB2 inverse agonists modulate activated microglia by shifting them away from the harmful pro-inflammatory M1 state toward the helpful reparative M2 state and thus can stem secondary injury cascades. We previously found that treatment with the CB2 inverse agonist SMM-189 after mild TBI in mice produced by focal cranial blast rescues visual deficits and the optic nerve axon loss that would otherwise result. We have further shown that raloxifene, which is Food and Drug Administration (FDA)-approved as an estrogen receptor modulator to treat osteoporosis, but also possesses CB2 inverse agonism, yields similar benefit in this TBI model through its modulation of microglia. As many different traumatic events produce TBI in humans, it is widely acknowledged that diverse animal models must be used in evaluating possible therapies. Here we examine the consequences of TBI created by blunt impact to the mouse head for visual function and associated pathologies and assess raloxifene benefit. We found that mice subjected to impact TBI exhibited decreases in contrast sensitivity and the B-wave of the electroretinogram, increases in light aversion and resting pupil diameter, and optic nerve axon loss, which were rescued by daily injection of raloxifene at 5 or 10 mg/ml for 2 weeks. Raloxifene treatment was associated with reduced M1 activation and/or enhanced M2 activation in retina, optic nerve, and optic tract after impact TBI. Our results suggest that the higher raloxifene dose, in particular, may be therapeutic for the optic nerve by enhancing the phagocytosis of axonal debris that would otherwise promote inflammation, thereby salvaging less damaged axons. Our current work, together with our prior studies, shows that microglial activation drives secondary injury processes after both impact and cranial blast TBI and raloxifene mitigates microglial activation and visual system injury in both cases. The results thus provide a strong basis for phase 2 human clinical trials evaluating raloxifene as a TBI therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...