Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(12): e81994, 2013.
Article in English | MEDLINE | ID: mdl-24358137

ABSTRACT

The overall conformations of regulated myosins or heavy meromyosins from chicken/turkey, scallop, tarantula, limulus, and scorpion sources have been studied by a number of techniques, including electron microscopy, sedimentation, and pulsed electron paramagnetic resonance. These studies have indicated that the binding of regulatory ions changes the conformation of the molecule from a compact shape found in the "off" state of the muscle to extended relationships between the tail and independently mobile heads that predominate in the "on" state. Here we strengthen the argument for the generality of this conformational change by using small angle X-ray scattering on heavy meromyosin from squid. Small angle X-ray scattering allows the protein to be visualized in solution under mild and relatively physiological conditions, and squid differs from the other species studied by at least 500 million years of evolution. Analysis of the data indicates that upon addition of Ca(2+) the radius of gyration increases. Differences in the squid "on" and "off" states are clearly distinguishable as bimodal and unimodal pair distance distribution functions respectively. These observations are consistent with a Ca(2+)-free squid heavy meromyosin that is compact, but which becomes extended when Ca(2+) is bound. Further, the scattering profile derived from the current model of tarantula heavy meromyosin in the "off" state is in excellent agreement with the measured "off" state scattering profile for squid heavy meromyosin. The previous and current studies together provide significant evidence that regulated myosin's compact off-state conformation is an ancient trait, inherited from a common ancestor during divergent evolution.


Subject(s)
Decapodiformes/metabolism , Muscles/metabolism , Myosin Subfragments/metabolism , Animals , Protein Conformation , Scattering, Radiation
2.
Article in English | MEDLINE | ID: mdl-23519797

ABSTRACT

All muscle-based movement is dependent upon carefully choreographed interactions between the two major muscle components, myosin and actin. Regulation of vertebrate smooth and molluscan muscle contraction is myosin based (both are in the myosin II class), and requires the double-headed form of myosin. Removal of Ca2+ from these muscles promotes a relatively compact conformation of the myosin dimer, which inhibits its interaction with actin. Although atomic structures of single myosin heads are available, the structure of any double-headed portion of myosin, including the ∼375 kDa heavy meromyosin (HMM), has only been visualized at low (∼20 Å) resolution by electron microscopy. Here, the growth of three-dimensional crystals of HMM with near-atomic resolution (up to ∼5 Å) and their X-ray diffraction are reported for the first time. These crystals were grown in off-state conditions, that is in the absence of Ca2+ and the presence of nucleotide analogs, using HMM from the funnel retractor muscle of squid. In addition to the crystallization conditions, the techniques used to isolate and purify this HMM are also described. Efforts at phasing and improving the resolution of the data in order to determine the structure are ongoing.


Subject(s)
Calcium/chemistry , Decapodiformes/chemistry , Muscles/chemistry , Myosin Subfragments/chemistry , Animals , Calcium/metabolism , Crystallization , Crystallography, X-Ray , Myosin Subfragments/isolation & purification , Protein Multimerization
3.
Biophys J ; 101(9): 2185-9, 2011 Nov 02.
Article in English | MEDLINE | ID: mdl-22067157

ABSTRACT

We have determined the crystal structure of a phosphorylated smooth-muscle myosin light chain domain (LCD). This reconstituted LCD is of a sea scallop catch muscle myosin with its phosphorylatable regulatory light chain (RLC SmoA). In the crystal structure, Arg(16), an arginine residue that is present in this isoform but not in vertebrate smooth-muscle RLC, stabilizes the phosphorylation site. This arginine interacts with the carbonyl group of the phosphorylation-site serine in the unphosphorylated LCD (determined previously), and with the phosphate group when the serine is phosphorylated. However, the overall conformation of the LCD is essentially unchanged upon phosphorylation. This result provides additional evidence that phosphorylation of the RLC is unlikely to act as an on-switch in regulation of scallop catch muscle myosin.


Subject(s)
Myosin Light Chains/chemistry , Pectinidae/metabolism , Smooth Muscle Myosins/chemistry , Amino Acid Sequence , Animals , Crystallization , Crystallography, X-Ray , Molecular Sequence Data , Phosphorylation , Protein Structure, Tertiary
4.
FASEB J ; 25(1): 111-21, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20837775

ABSTRACT

Formation of the strong binding interaction between actin and myosin is essential for force generation in muscle and in cytoskeletal motor systems. To clarify the role of the closure of myosin's actin-binding cleft in the actomyosin interaction, we performed rapid kinetic, spectroscopic, and calorimetric experiments and atomic-level energetic calculations on a variety of myosin isoforms for which atomic structures are available. Surprisingly, we found that the endothermic actin-binding profile of vertebrate skeletal muscle myosin subfragment-1 is unique among studied myosins. We show that the diverse propensity of myosins for cleft closure determines different energetic profiles as well as structural and kinetic pathways of actin binding. Depending on the type of myosin, strong actin binding may occur via induced-fit or conformational preselection mechanisms. However, cleft closure does not directly determine the kinetics and affinity of actin binding. We also show that cleft closure is enthalpically unfavorable, reflecting the development of an internal strain within myosin in order to adopt precise steric complementarity to the actin filament. We propose that cleft closure leads to an increase in the torsional strain of myosin's central ß-sheet that has been proposed to serve as an allosteric energy-transducing spring during force generation.


Subject(s)
Actomyosin/chemistry , Muscle, Skeletal/metabolism , Myosin Subfragments/chemistry , Myosins/chemistry , Actins/chemistry , Actins/metabolism , Actomyosin/metabolism , Animals , Binding Sites , Calorimetry , Kinetics , Myosin Subfragments/metabolism , Myosins/metabolism , Protein Binding , Rabbits , Spectrometry, Fluorescence , Temperature
5.
Proc Natl Acad Sci U S A ; 108(1): 114-9, 2011 Jan 04.
Article in English | MEDLINE | ID: mdl-21149681

ABSTRACT

We have determined the 2.3-Å-resolution crystal structure of a myosin light chain domain, corresponding to one type found in sea scallop catch ("smooth") muscle. This structure reveals hinges that may function in the "on" and "off" states of myosin. The molecule adopts two different conformations about the heavy chain "hook" and regulatory light chain (RLC) helix D. This conformational change results in extended and compressed forms of the lever arm whose lengths differ by 10 Å. The heavy chain hook and RLC helix D hinges could thus serve as a potential major and localized source of cross-bridge compliance during the contractile cycle. In addition, in one of the molecules of the crystal, part of the RLC N-terminal extension is seen in atomic detail and forms a one-turn alpha-helix that interacts with RLC helix D. This extension, whose sequence is highly variable in different myosins, may thus modulate the flexibility of the lever arm. Moreover, the relative proximity of the phosphorylation site to the helix D hinge suggests a potential role for conformational changes about this hinge in the transition between the on and off states of regulated myosins.


Subject(s)
Bivalvia/chemistry , Models, Molecular , Muscle, Smooth/chemistry , Myosin Type II/chemistry , Protein Conformation , Actins/metabolism , Adenosine Triphosphatases/metabolism , Animals , Biomechanical Phenomena , Crystallization , Myosin Type II/metabolism
6.
J Mol Biol ; 394(3): 496-505, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-19769984

ABSTRACT

In regulated myosin, motor and enzymatic activities are toggled between the on-state and off-state by a switch located on its lever arm domain, here called the regulatory domain (RD). This region consists of a long alpha-helical "heavy chain" stabilized by a "regulatory" light chain (RLC) and an "essential" light chain (ELC). The on-state is activated by phosphorylation of the RLC of vertebrate smooth muscle RD or by direct binding of Ca(2+) to the ELC of molluscan RD. Crystal structures are available only for the molluscan RD. To understand in more detail the pathway between the on-state and the off-state, we have now also determined the crystal structure of a molluscan (scallop) RD in the absence of Ca(2+). Our results indicate that loss of Ca(2+) abolishes most of the interactions between the light chains and may increase the flexibility of the RD heavy chain. We propose that disruption of critical links with the C-lobe of the RLC is the key event initiating the off-state in both smooth muscle myosins and molluscan myosins.


Subject(s)
Myosin Light Chains/chemistry , Myosin Light Chains/metabolism , Amino Acid Substitution , Animals , Binding Sites , Calcium/metabolism , Crystallography, X-Ray , In Vitro Techniques , Models, Molecular , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/genetics , Molecular Motor Proteins/metabolism , Mutagenesis, Site-Directed , Myosin Light Chains/genetics , Pectinidae/genetics , Pectinidae/metabolism , Protein Conformation , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Static Electricity
7.
Structure ; 15(5): 553-64, 2007 May.
Article in English | MEDLINE | ID: mdl-17502101

ABSTRACT

Unlike processive cellular motors such as myosin V, whose structure has recently been determined in a "rigor-like" conformation, myosin II from contracting muscle filaments necessarily spends most of its time detached from actin. By using squid and sea scallop sources, however, we have now obtained similar rigor-like atomic structures for muscle myosin heads (S1). The significance of the hallmark closed actin-binding cleft in these crystal structures is supported here by actin/S1-binding studies. These structures reveal how different duty ratios, and hence cellular functions, of the myosin isoforms may be accounted for, in part, on the basis of detailed differences in interdomain contacts. Moreover, the rigor-like position of switch II turns out to be unique for myosin V. The overall arrangements of subdomains in the motor are relatively conserved in each of the known contractile states, and we explore qualitatively the energetics of these states.


Subject(s)
Myosins/chemistry , Myosins/physiology , Rigor Mortis/metabolism , Signal Transduction/physiology , Allosteric Regulation/physiology , Animals , Crystallography, X-Ray , Decapodiformes/chemistry , Decapodiformes/metabolism , Pectinidae/chemistry , Pectinidae/metabolism , Protein Conformation
8.
Biochemistry ; 42(25): 7663-74, 2003 Jul 01.
Article in English | MEDLINE | ID: mdl-12820875

ABSTRACT

Atomic structures of scallop myosin subfragment 1(S1) with the bound MgADP, MgAMPPNP, and MgADP.BeF(x) provide crystallographic evidence for a destabilization of the helix containing reactive thiols SH1 (Cys703) and SH2 (Cys693). A destabilization of this helix was not observed in previous structures of S1 (from chicken skeletal, Dictyostelium discoideum, and smooth muscle myosins), including complexes for which solution experiments indicated such a destabilization. In this study, the factors that influence the SH1-SH2 helix in scallop S1 were examined using monofunctional and bifunctional thiol reagents. The rate of monofunctional labeling of scallop S1 was increased in the presence of MgADP and MgATPgammaS but was inhibited by MgADP.V(i) and actin. The resulting changes in ATPase activities of S1 were symptomatic of SH2 and not SH1 modification, which was confirmed by mass spectrometry analysis. With bifunctional reagents of various lengths, cross-linking did not occur on a short time scale in the absence of nucleotides. In the presence of MgADP, cross-linking was greatly enhanced for all of the reagents. These reactions, as well as the formation of a disulfide bond between SH1 and SH2, were much faster in scallop S1.ADP than in rabbit skeletal S1.ADP and were rate-limited by the initial attachment of the reagent to scallop S1. The cross-linking sites were mapped by mass spectrometry to SH1 and SH2. These results reveal isoform-specific differences in the conformation and dynamics of the SH1-SH2 helix, providing a possible explanation for destabilization of this helix in some scallop S1 but not in other S1 isoform structures.


Subject(s)
Mollusca/metabolism , Myosins/chemistry , Animals , Myosins/metabolism , Protein Conformation , Structure-Activity Relationship , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...