Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34493583

ABSTRACT

Assisted gene flow (AGF) is a conservation intervention to accelerate species adaptation to climate change by importing genetic diversity into at-risk populations. Corals exemplify both the need for AGF and its technical challenges; corals have declined in abundance, suffered pervasive reproductive failures, and struggled to adapt to climate change, yet mature corals cannot be easily moved for breeding, and coral gametes lose viability within hours. Here, we report the successful demonstration of AGF in corals using cryopreserved sperm that was frozen for 2 to 10 y. We fertilized Acropora palmata eggs from the western Caribbean (Curaçao) with cryopreserved sperm from genetically distinct populations in the eastern and central Caribbean (Florida and Puerto Rico, respectively). We then confirmed interpopulation parentage in the Curaçao-Florida offspring using 19,696 single-nucleotide polymorphism markers. Thus, we provide evidence of reproductive compatibility of a Caribbean coral across a recognized barrier to gene flow. The 6-mo survival of AGF offspring was 42%, the highest ever achieved in this species, yielding the largest wildlife population ever raised from cryopreserved material. By breeding a critically endangered coral across its range without moving adults, we show that AGF using cryopreservation is a viable conservation tool to increase genetic diversity in threatened marine populations.


Subject(s)
Anthozoa/genetics , Gene Flow/genetics , Spermatozoa/physiology , Animals , Conservation of Natural Resources/methods , Coral Reefs , Cryopreservation/methods , Endangered Species , Fertilization/genetics , Florida , Genetics, Population/methods , Germ Cells/physiology , Male , Puerto Rico , Reproduction/genetics
2.
Sci Rep ; 11(1): 11244, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045538

ABSTRACT

The long-spined sea urchin Diadema antillarum was once an abundant reef grazing herbivore throughout the Caribbean. During the early 1980s, D. antillarum populations were reduced by > 93% due to an undescribed disease. This event resulted in a lack of functional reef herbivory and contributed to ongoing ecological shifts from hard coral towards macroalgae dominated reefs. Limited natural recovery has increased interest in a range of strategies for augmenting herbivory. An area of focus has been developing scalable ex situ methods for rearing D. antillarum from gametes. The ultimate use of such a tool would be exploring hatchery origin restocking strategies. Intensive ex situ aquaculture is a potentially viable, yet difficult, method for producing D. antillarum at scales necessary to facilitate restocking. Here we describe a purpose-built, novel recirculating aquaculture system and the broodstock management and larval culture process that has produced multiple D. antillarum cohorts, and which has the potential for practical application in a dedicated hatchery setting. Adult animals held in captivity can be induced to spawn year-round, with some evidence for annual and lunar periodicity. Fecundity and fertilization rates are both consistently very high, yet challenges persist in both late stage larval development and early post-settlement survival. Initial success was realized with production of 100 juvenile D. antillarum from ~ 1200 competent larvae. While the system we describe requires a significant level of investment and technical expertise, this work advances D. antillarum culture efforts in potential future hatchery settings and improves the viability of scalable ex situ production for population enhancement.


Subject(s)
Anthozoa/growth & development , Coral Reefs , Ecosystem , Sea Urchins/growth & development , Animals , Herbivory , Population Density
3.
J Plankton Res ; 32(1): 75-91, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20046854

ABSTRACT

Zooplankton play an important role in the trophic dynamics of coral reef ecosystems. Detailed vertical and temporal distribution and biomass of zooplankton were evaluated at four heights off the bottom and at six times throughout the diel cycle over a coral reef in the Florida Keys (USA). Zooplankton abundance averaged 4396 +/- 1949 SD individuals m(-3), but temporal and spatial distributions varied for individual zooplankton taxa by time of day and by height off the bottom. Copepods comprised 93-96% of the abundance in the samples. Taxon-based zooplankton CHN values paired with abundance data were used to estimate biomass. Average daily biomass ranged from 3.1 to 21.4 mg C m(-3) and differed by both height off the bottom and by time of day. While copepods were the numerically dominant organisms, their contribution to biomass was only 35% of the total zooplankton biomass. Our findings provide important support for the new emerging paradigm of how zooplankton are distributed over reefs.

SELECTION OF CITATIONS
SEARCH DETAIL
...