Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Crit Care Explor ; 6(5): e1094, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38727717

ABSTRACT

OBJECTIVES: Near-infrared spectroscopy (NIRS) is a potentially valuable modality to monitor the adequacy of oxygen delivery to the brain and other tissues in critically ill patients, but little is known about the physiologic determinants of NIRS-derived tissue oxygen saturations. The purpose of this study was to assess the contribution of routinely measured physiologic parameters to tissue oxygen saturation measured by NIRS. DESIGN: An observational sub-study of patients enrolled in the Role of Active Deresuscitation After Resuscitation-2 (RADAR-2) randomized feasibility trial. SETTING: Two ICUs in the United Kingdom. PATIENTS: Patients were recruited for the RADAR-2 study, which compared a conservative approach to fluid therapy and deresuscitation with usual care. Those included in this sub-study underwent continuous NIRS monitoring of cerebral oxygen saturations (SctO2) and quadriceps muscle tissue saturations (SmtO2). INTERVENTION: Synchronized and continuous mean arterial pressure (MAP), heart rate (HR), and pulse oximetry (oxygen saturation, Spo2) measurements were recorded alongside NIRS data. Arterial Paco2, Pao2, and hemoglobin concentration were recorded 12 hourly. Linear mixed effect models were used to investigate the association between these physiologic variables and cerebral and muscle tissue oxygen saturations. MEASUREMENTS AND MAIN RESULTS: Sixty-six patients were included in the analysis. Linear mixed models demonstrated that Paco2, Spo2, MAP, and HR were weakly associated with SctO2 but only explained 7.1% of the total variation. Spo2 and MAP were associated with SmtO2, but together only explained 0.8% of its total variation. The remaining variability was predominantly accounted for by between-subject differences. CONCLUSIONS: Our findings demonstrated that only a small proportion of variability in NIRS-derived cerebral and tissue oximetry measurements could be explained by routinely measured physiologic variables. We conclude that for NIRS to be a useful monitoring modality in critical care, considerable further research is required to understand physiologic determinants and prognostic significance.


Subject(s)
Critical Illness , Oximetry , Oxygen Saturation , Spectroscopy, Near-Infrared , Humans , Spectroscopy, Near-Infrared/methods , Male , Female , Oxygen Saturation/physiology , Middle Aged , Aged , Oximetry/methods , Monitoring, Physiologic/methods , Brain/metabolism , Brain/blood supply , United Kingdom , Oxygen/metabolism , Oxygen/blood , Oxygen/analysis , Intensive Care Units , Quadriceps Muscle/metabolism , Quadriceps Muscle/blood supply
2.
Biol Psychiatry Glob Open Sci ; 4(1): 385-393, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38298776

ABSTRACT

Background: During childhood and adolescence, attention-deficit/hyperactivity disorder (ADHD) is associated with changes in symptoms and brain structures, but the link between brain structure and function remains unclear. The limbic system, often termed the "emotional network," plays an important role in a number of neurodevelopmental disorders, yet this brain network remains largely unexplored in ADHD. Investigating the developmental trajectories of key limbic system structures during childhood and adolescence will provide novel insights into the neurobiological underpinnings of ADHD. Methods: Structural magnetic resonance imaging data (380 scans), emotional regulation (Affective Reactivity Index), and ADHD symptom severity (Conners 3 ADHD Index) were measured at up to 3 time points between 9 and 14 years of age in a sample of children and adolescents with ADHD (n = 57) and control children (n = 109). Results: Compared with the control group, the ADHD group had lower volume of the amygdala (left: ß standardized [ß_std] = -0.38; right: ß_std = -0.34), hippocampus (left: ß_std = -0.44; right: ß_std = -0.34), cingulate gyrus (left: ß_std = -0.42; right: ß_std = -0.32), and orbitofrontal cortex (right: ß_std = -0.33) across development (9-14 years). There were no significant group-by-age interactions in any of the limbic system structures. Exploratory analysis found a significant Conners 3 ADHD Index-by-age interaction effect on the volume of the left mammillary body (ß_std = 0.17) in the ADHD group across the 3 study time points. Conclusions: Children and adolescents with ADHD displayed lower volume and atypical development in limbic system structures. Furthermore, atypical limbic system development was associated with increased symptom severity, highlighting a potential neurobiological correlate of ADHD severity.

3.
Transl Psychiatry ; 14(1): 44, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245522

ABSTRACT

Hippocampal volumetric reductions are observed across the psychosis spectrum, with interest in the localisation of these reductions within the hippocampal subfields increasing. Deficits of the CA1 subfield in particular have been implicated in the neuropathophysiology of psychotic disorders. Investigating the trajectory of these abnormalities in healthy adolescents reporting sub-threshold psychotic experiences (PE) can provide insight into the neural mechanisms underlying psychotic symptoms without the potentially confounding effects of a formal disorder, or antipsychotic medication. In this novel investigation, a sample of 211 young people aged 11-13 participated initially in the Adolescent Brain Development study. PE classification was determined by expert consensus at each timepoint. Participants underwent neuroimaging at 3 timepoints, over 6 years. 78 participants with at least one scan were included in the final sample; 33 who met criteria for a definite PE at least once across all the timepoints (PE group), and 45 controls. Data from bilateral subfields of interest (CA1, CA2/3, CA4/DG, presubiculum and subiculum) were extracted for Linear Mixed Effects analyses. Before correction, subfield volumes were found to increase in the control group and decrease in the PE group for the right CA2 and CA2/3 subfields, with moderate to large effect sizes (d = -0.61, and d = -0.79, respectively). Before correction, right subiculum and left presubiculum volumes were reduced in the PE group compared to controls, regardless of time, with moderate effect sizes (d = -0.52, and d = -0.59, respectively). However, none of these effects survived correction. Severity of symptoms were not associated with any of the noted subfields. These findings provide novel insight to the discussion of the role of hippocampal subfield abnormalities in the pathophysiology underlying psychotic experiences.


Subject(s)
Antipsychotic Agents , Psychotic Disorders , Adolescent , Humans , Organ Size , Hippocampus/diagnostic imaging , Psychotic Disorders/diagnostic imaging , Neuroimaging/methods , Magnetic Resonance Imaging/methods
5.
Biol Psychiatry Glob Open Sci ; 3(2): 264-273, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37124352

ABSTRACT

Background: Gray matter abnormalities are observed across the psychosis spectrum. The trajectory of these abnormalities in healthy adolescents reporting subthreshold psychotic experiences (PEs) may provide insight into the neural mechanisms underlying psychotic symptoms. The risk of psychosis and additional psychopathology is even higher among these individuals who also report childhood adversity/DSM-5 diagnoses. Thus, the aims of this longitudinal study were to investigate PE-related volumetric changes in young people, noting any effects of childhood adversity/DSM-5 diagnosis. Methods: A total of 211 young people 11 to 13 years of age participated in the initial Adolescent Brain Development study. PE classification was determined by expert consensus at each time point. Participants underwent neuroimaging at 3 time points over 6 years. A total of 76 participants with at least one scan were included in the final sample; 34 who met criteria for PEs at least once across all the time points (PE group) and 42 control subjects. Data from 20 bilateral regions of interest were extracted for linear mixed-effects analyses. Results: Right hippocampal volume increased over time in the control group, with no increase in the PE group (p = .00352). DSM-5 diagnosis and childhood adversity were not significantly associated with right hippocampal volume. There was no significant effect of group or interaction in any other region. Conclusions: These findings further implicate right hippocampal volumetric abnormalities in the pathophysiology underlying PEs. Furthermore, as suggested by previous studies in those at clinical high risk for psychosis and those with first-episode psychosis, it is possible that these deficits may be a marker for later clinical outcomes.

6.
Psychol Med ; 53(10): 4732-4741, 2023 07.
Article in English | MEDLINE | ID: mdl-35775365

ABSTRACT

BACKGROUND: The mechanisms underlying the antipsychotic potential of cannabidiol (CBD) remain unclear but growing evidence indicates that dysfunction in the insula, a key brain region involved in the processing of motivationally salient stimuli, may have a role in the pathophysiology of psychosis. Here, we investigate whether the antipsychotic mechanisms of CBD are underpinned by their effects on insular activation, known to be involved in salience processing. METHODS: A within-subject, crossover, double-blind, placebo-controlled investigation of 19 healthy controls and 15 participants with early psychosis was conducted. Administration of a single dose of CBD was compared with placebo in psychosis participants while performing the monetary incentive delay task, an fMRI paradigm. Anticipation of reward and loss were used to contrast motivationally salient stimuli against a neutral control condition. RESULTS: No group differences in brain activation between psychosis patients compared with healthy controls were observed. Attenuation of insula activation was observed following CBD, compared to placebo. Sensitivity analyses controlling for current cannabis use history did not affect the main results. CONCLUSION: Our findings are in accordance with existing evidence suggesting that CBD modulates brain regions involved in salience processing. Whether such effects underlie the putative antipsychotic effects of CBD remains to be investigated.


Subject(s)
Antipsychotic Agents , Cannabidiol , Psychotic Disorders , Humans , Antipsychotic Agents/pharmacology , Brain , Cannabidiol/pharmacology , Double-Blind Method , Magnetic Resonance Imaging , Motivation , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy
7.
Eur J Neurosci ; 56(7): 5116-5131, 2022 10.
Article in English | MEDLINE | ID: mdl-36004608

ABSTRACT

Psychotic experiences (PEs) such as hallucinations and delusions are common among young people without psychiatric diagnoses and are associated with connectivity and white matter abnormalities, particularly in the limbic system. Using diffusion magnetic resonance imaging (MRI) in adolescents with reported PEs and matched controls, we examined the cingulum white matter tract along its length rather than as the usually reported single indivisible structure. Complex regional differences in diffusion metrics were found along the bundle at key loci following Bonferroni significance adjustment (p < .00013) with moderate to large effect sizes (.11-.76) throughout all significant subsegments. In this prospective community-based cohort of school-age children, these findings suggest that white matter alterations in the limbic system may be more common in the general non-clinical adolescent population than previously thought. Such white matter alternations may only be uncovered using a similar more granular along-tract analysis of white matter tracts.


Subject(s)
White Matter , Adolescent , Child , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Humans , Nerve Net , Prospective Studies , White Matter/diagnostic imaging , White Matter/pathology
8.
Front Psychiatry ; 13: 748372, 2022.
Article in English | MEDLINE | ID: mdl-35599780

ABSTRACT

Studies of early life stress (ELS) demonstrate the long-lasting effects of acute and chronic stress on developmental trajectories. Such experiences can become biologically consolidated, creating individual vulnerability to psychological and psychiatric issues later in life. The hippocampus, amygdala, and the medial prefrontal cortex are all important limbic structures involved in the processes that undermine mental health. Hyperarousal of the sympathetic nervous system with sustained allostatic load along the Hypothalamic Pituitary Adrenal (HPA) axis and its connections has been theorized as the basis for adult psychopathology following early childhood trauma. In this review we synthesize current understandings and hypotheses concerning the neurobiological link between childhood trauma, the HPA axis, and adult psychiatric illness. We examine the mechanisms at play in the brain of the developing child and discuss how adverse environmental stimuli may become biologically incorporated into the structure and function of the adult brain via a discussion of the neurosequential model of development, sensitive periods and plasticity. The HPA connections and brain areas implicated in ELS and psychopathology are also explored. In a targeted review of HPA activation in mood and psychotic disorders, cortisol is generally elevated across mood and psychotic disorders. However, in bipolar disorder and psychosis patients with previous early life stress, blunted cortisol responses are found to awakening, psychological stressors and physiological manipulation compared to patients without previous early life stress. These attenuated responses occur in bipolar and psychosis patients on a background of increased cortisol turnover. Although cortisol measures are generally raised in depression, the evidence for a different HPA activation profile in those with early life stress is inconclusive. Further research is needed to explore the stress responses commonalities between bipolar disorder and psychosis in those patients with early life stress.

10.
NPJ Schizophr ; 7(1): 24, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980870

ABSTRACT

It is unclear whether early psychosis in the context of cannabis use is different from psychosis without cannabis. We investigated this issue by examining whether abnormalities in oculomotor control differ between patients with psychosis with and without a history of cannabis use. We studied four groups: patients in the early phase of psychosis with a history of cannabis use (EPC; n = 28); patients in the early phase of psychosis without (EPNC; n = 25); controls with a history of cannabis use (HCC; n = 16); and controls without (HCNC; n = 22). We studied smooth pursuit eye movements using a stimulus with sinusoidal waveform at three target frequencies (0.2, 0.4 and 0.6 Hz). Participants also performed 40 antisaccade trials. There were no differences between the EPC and EPNC groups in diagnosis, symptom severity or level of functioning. We found evidence for a cannabis effect (χ2 = 23.14, p < 0.001), patient effect (χ2 = 4.84, p = 0.028) and patient × cannabis effect (χ2 = 4.20, p = 0.04) for smooth pursuit velocity gain. There was a large difference between EPC and EPNC (g = 0.76-0.86) with impairment in the non cannabis using group. We found no significant effect for antisaccade error whereas patients had fewer valid trials compared to controls. These data indicate that impairment of smooth pursuit in psychosis is more severe in patients without a history of cannabis use. This is consistent with the notion that the severity of neurobiological alterations in psychosis is lower in patients whose illness developed in the context of cannabis use.

11.
J Psychopharmacol ; 35(7): 814-822, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33860709

ABSTRACT

BACKGROUND: Emerging evidence supports the antipsychotic effect of cannabidiol, a non-intoxicating component of cannabis, in people with psychosis. Preclinical findings suggest that this antipsychotic effect may be related to cannabidiol modulating glutamatergic signalling in the brain. AIM: The purpose of this study was to investigate the effects of cannabidiol on the neurochemical mechanisms underlying psychosis. METHODS: We investigated the effects of a single oral dose of cannabidiol (600 mg) in patients with psychosis, using a double-blind, randomised, placebo-controlled, repeated-measures, within-subject cross-over design. After drug administration, 13 patients were scanned using proton magnetic resonance spectroscopy to measure left hippocampal glutamate levels. Symptom severity was rated using the Positive and Negative Syndrome Scale 60 min before drug administration (pre-scan), and 270 min after drug administration (post-scan). Effects of cannabidiol on hippocampal glutamate levels, symptom severity, and correlations between hippocampal glutamate and symptoms were investigated. RESULTS: Compared to placebo, there was a significant increase in hippocampal glutamate (p=0.035), and a significantly greater decrease in symptom severity (p=0.032) in the psychosis patients under cannabidiol treatment. There was also a significant negative relationship between post-treatment total Positive and Negative Syndrome Scale score and hippocampal glutamate (p=0.047), when baseline Positive and Negative Syndrome Scale score, treatment (cannabidiol vs placebo), and interaction between treatment and glutamate levels were controlled for. CONCLUSIONS: These findings may suggest a link between the increase in glutamate levels and concomitant decrease in symptom severity under cannabidiol treatment observed in psychosis patients. Furthermore, the findings provide novel insight into the potential neurochemical mechanisms underlying the antipsychotic effects of cannabidiol.


Subject(s)
Antipsychotic Agents/pharmacology , Cannabidiol/pharmacology , Glutamic Acid/drug effects , Hippocampus/drug effects , Psychotic Disorders/drug therapy , Schizophrenia/drug therapy , Adult , Antipsychotic Agents/administration & dosage , Cannabidiol/administration & dosage , Female , Glutamic Acid/metabolism , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Male , Outcome Assessment, Health Care , Proton Magnetic Resonance Spectroscopy , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/metabolism , Schizophrenia/diagnostic imaging , Schizophrenia/metabolism , Severity of Illness Index , Young Adult
12.
Thorax ; 76(7): 696-703, 2021 07.
Article in English | MEDLINE | ID: mdl-33692174

ABSTRACT

INTRODUCTION: Risk factors of adverse outcomes in COVID-19 are defined but stratification of mortality using non-laboratory measured scores, particularly at the time of prehospital SARS-CoV-2 testing, is lacking. METHODS: Multivariate regression with bootstrapping was used to identify independent mortality predictors in patients admitted to an acute hospital with a confirmed diagnosis of COVID-19. Predictions were externally validated in a large random sample of the ISARIC cohort (N=14 231) and a smaller cohort from Aintree (N=290). RESULTS: 983 patients (median age 70, IQR 53-83; in-hospital mortality 29.9%) were recruited over an 11-week study period. Through sequential modelling, a five-predictor score termed SOARS (SpO2, Obesity, Age, Respiratory rate, Stroke history) was developed to correlate COVID-19 severity across low, moderate and high strata of mortality risk. The score discriminated well for in-hospital death, with area under the receiver operating characteristic values of 0.82, 0.80 and 0.74 in the derivation, Aintree and ISARIC validation cohorts, respectively. Its predictive accuracy (calibration) in both external cohorts was consistently higher in patients with milder disease (SOARS 0-1), the same individuals who could be identified for safe outpatient monitoring. Prediction of a non-fatal outcome in this group was accompanied by high score sensitivity (99.2%) and negative predictive value (95.9%). CONCLUSION: The SOARS score uses constitutive and readily assessed individual characteristics to predict the risk of COVID-19 death. Deployment of the score could potentially inform clinical triage in preadmission settings where expedient and reliable decision-making is key. The resurgence of SARS-CoV-2 transmission provides an opportunity to further validate and update its performance.


Subject(s)
COVID-19/mortality , Hospital Mortality , Hospitalization/statistics & numerical data , Monitoring, Ambulatory/statistics & numerical data , Pneumonia, Viral/mortality , Aged , Aged, 80 and over , Decision Making , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Predictive Value of Tests , Prognosis , Risk Factors , SARS-CoV-2 , Severity of Illness Index
13.
Psychol Med ; 51(2): 194-200, 2021 01.
Article in English | MEDLINE | ID: mdl-33501901

ABSTRACT

Previous systematic reviews and meta-analyses of cross-sectional data assessing the effect of cannabis on cognitive functioning and intelligence show inconsistent results. We hypothesized that frequent and dependent cannabis use in youth would be associated with Intelligence Quotient (IQ) decline. This study is a systematic review and meta-analysis. We searched Embase, PubMed and PsychInfo from inception to 24 January 2020. We included studies with non-treatment seeking samples and pre- and post-exposure measures of IQ. We requested data from authors if summary data was not available from published work. We preregistered our review with PROSPERO (ID no. CRD42019125624). We found seven cohort studies including 808 cases and 5308 controls. We found a significant effect for the association between frequent or dependent cannabis use in youth and IQ change, Cohen's d = -0.132 (95% CI -0.198 to -0.066) p < 0.001. Statistical heterogeneity between studies was also low at I2 = 0.2%. Study quality was moderate to high. This translates to an average decline of approximately 2 IQ points following exposure to cannabis in youth. Future studies should have longer periods of follow up to assess the magnitude of developmental impact.


Subject(s)
Intelligence/drug effects , Marijuana Use/psychology , Adolescent , Cognition/drug effects , Cohort Studies , Humans , Intelligence Tests , Longitudinal Studies , Young Adult
14.
Psychol Med ; 51(4): 596-606, 2021 03.
Article in English | MEDLINE | ID: mdl-31994476

ABSTRACT

BACKGROUND: Recent evidence suggests that cannabidiol (CBD), a non-intoxicating ingredient present in cannabis extract, has an antipsychotic effect in people with established psychosis. However, the effect of CBD on the neurocognitive mechanisms underlying psychosis is unknown. METHODS: Patients with established psychosis on standard antipsychotic treatment were studied on separate days at least one week apart, to investigate the effects of a single dose of orally administered CBD (600 mg) compared to a matched placebo (PLB), using a double-blind, randomized, PLB-controlled, repeated-measures, within-subject cross-over design. Three hours after taking the study drug participants were scanned using a block design functional magnetic resonance imaging (fMRI) paradigm, while performing a verbal paired associate learning task. Fifteen psychosis patients completed both study days, 13 completed both scanning sessions. Nineteen healthy controls (HC) were also scanned using the same fMRI paradigm under identical conditions, but without any drug administration. Effects of CBD on brain activation measured using the blood oxygen level-dependent hemodynamic response fMRI signal were studied in the mediotemporal, prefrontal, and striatal regions of interest. RESULTS: Compared to HC, psychosis patients under PLB had altered prefrontal activation during verbal encoding, as well as altered mediotemporal and prefrontal activation and greater mediotemporal-striatal functional connectivity during verbal recall. CBD attenuated dysfunction in these regions such that activation under its influence was intermediate between the PLB condition and HC. CBD also attenuated hippocampal-striatal functional connectivity and caused trend-level symptom reduction in psychosis patients. CONCLUSIONS: This suggests that normalization of mediotemporal and prefrontal dysfunction and mediotemporal-striatal functional connectivity may underlie the antipsychotic effects of CBD.


Subject(s)
Antipsychotic Agents/pharmacology , Cannabidiol/pharmacology , Prefrontal Cortex/drug effects , Psychotic Disorders/physiopathology , Adult , Attention/drug effects , Brain/drug effects , Corpus Striatum/drug effects , Double-Blind Method , Female , Hippocampus/drug effects , Humans , Magnetic Resonance Imaging , Male , Mental Recall/drug effects , Young Adult
15.
Psychol Med ; 51(11): 1861-1869, 2021 08.
Article in English | MEDLINE | ID: mdl-32216843

ABSTRACT

BACKGROUND: Psychotic experiences (PE) are highly prevalent in childhood and are known to be associated with co-morbid mental health disorders and functional difficulties in adolescence. However, little is known about the long-term outcomes of young people who report PE. METHODS: As part of the Adolescent Brain Development Study, 211 young people were recruited in childhood (mean age 11.7 years) and underwent detailed clinical interviews, with 25% reporting PE. A 10 year follow-up study was completed and 103 participants returned (mean age 20.9 years). Structured clinical interviews for DSM-5 (SCID-5) and interviewer-rated assessments of functioning were conducted. A detailed neuropsychological battery was also administered. Analyses investigated group differences between those who had ever reported PE and controls in early adulthood. RESULTS: The PE group was at a significantly higher risk of meeting DSM-5 criteria for a current (OR 4.08, CI 1.16-14.29, p = 0.03) and lifetime psychiatric disorder (OR 3.27, CI 1.43-7.47, p = 0.005). They were also at a significantly higher risk of multi-morbid lifetime psychiatric disorders. Significantly lower scores on current social and global functioning measures were observed for the PE group. Overall, there were no differences in neuropsychological performance between groups apart from significantly lower scores on the Stroop Word task and the Purdue Pegboard task for the PE group. CONCLUSIONS: Our findings suggest that reports of PE are associated with poorer mental health and functional outcomes in early adulthood, with some persisting cognitive and motor deficits. Young people who report such symptoms could be considered a target group for interventions to aid functional outcomes.


Subject(s)
Functional Status , Neuropsychological Tests , Psychopathology , Psychotic Disorders/psychology , Adolescent , Adult , Child , Female , Humans , Longitudinal Studies , Male , Mental Disorders/diagnosis , Prevalence , Young Adult
16.
Psychopharmacology (Berl) ; 238(5): 1315-1331, 2021 May.
Article in English | MEDLINE | ID: mdl-31814047

ABSTRACT

RATIONALE: Prolonged use of cannabis, the most widely used illicit drug worldwide, has been consistently associated with impairment in memory and verbal learning. Although the neurophysiological underpinnings of these impairments have been investigated previously using functional magnetic resonance imaging (fMRI), while performing memory tasks, the results of these studies have been inconsistent and no clear picture has emerged yet. Furthermore, no previous studies have investigated trial-by-trial learning. OBJECTIVES: We aimed to investigate the neural underpinnings of impaired verbal learning in cannabis users as estimated over repeated learning trials. METHODS: We studied 21 adolescent-onset regular cannabis users and 21 non-users using fMRI performed at least 12 h after last cannabis use, while they performed a paired associate verbal learning task that allowed us to examine trial-by-trial learning. Brain activation during repeated verbal encoding and recall conditions of the task was indexed using the blood oxygen level-dependent haemodynamic response fMRI signal. RESULTS: There was a significant improvement in recall score over repeated trials indicating learning occurring across the two groups of participants. However, learning was significantly slower in cannabis users compared to non-users (p = 0.032, partial eta-squared = 0.108). While learning verbal stimuli over repeated encoding blocks, non-users displayed progressive increase in recruitment of the midbrain, parahippocampal gyrus and thalamus (p = 0.00939, partial eta-squared = 0.180). In contrast, cannabis users displayed a greater but disrupted activation pattern in these regions, which showed a stronger correlation with new word-pairs learnt over the same blocks in cannabis users than in non-users. CONCLUSIONS: These results suggest that disrupted medial temporal and midbrain function underlie slower learning in adolescent-onset cannabis users.


Subject(s)
Magnetic Resonance Imaging/methods , Marijuana Smoking/psychology , Verbal Learning/physiology , Adolescent , Adult , Female , Humans , Learning/physiology , Male , Memory/physiology , Mental Recall/physiology , Mesencephalon/physiopathology , Parahippocampal Gyrus/physiopathology , Young Adult
17.
Schizophr Bull ; 46(6): 1608-1618, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32614036

ABSTRACT

Abnormal functional connectivity (FC, the temporal synchronization of activation across distinct brain regions) of the default mode (DMN), salience (SN), central executive (CEN), and motor (MN) networks is well established in psychosis. However, little is known about FC in individuals, particularly adolescents, reporting subthreshold psychotic experiences (PE) and their trajectory over time. Thus, the aim of this study was to investigate the FC of these networks in adolescents with PE. In this population-based case-control study, 24 adolescents (mean age = 13.58) meeting the criteria for PE were drawn from a sample of 211 young people recruited and scanned for a neuroimaging study, with a follow-up scan 2 years later (n = 18, mean age = 15.78) and compared to matched controls drawn from the same sample. We compared FC of DMN, SN, CEN, and MN regions between PE and controls using whole-brain FC analyses. At both timepoints, the PE group displayed significant hypoconnectivity compared to controls. At baseline, FC in the PE group was decreased between MN and DMN regions. At follow-up, dysconnectivity in the PE group was more widespread. Over time, controls displayed greater FC changes than the PE group, with FC generally increasing between MN, DMN, and SN regions. Adolescents with PE exhibit hypoconnectivity across several functional networks also found to be hypoconnected in established psychosis. Our findings highlight the potential for studies of adolescents reporting PE to reveal early neural correlates of psychosis and support further investigation of the role of the MN in PE and psychotic disorders.


Subject(s)
Cerebral Cortex/physiopathology , Connectome , Default Mode Network/physiopathology , Nerve Net/physiopathology , Psychotic Disorders/physiopathology , Adolescent , Case-Control Studies , Cerebral Cortex/diagnostic imaging , Default Mode Network/diagnostic imaging , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging
18.
Hum Brain Mapp ; 41(15): 4386-4396, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32687254

ABSTRACT

Around half of patients with early psychosis have a history of cannabis use. We aimed to determine if there are neurobiological differences in these the subgroups of persons with psychosis with and without a history of cannabis use. We expected to see regional deflations in hippocampus as a neurotoxic effect and regional inflations in striatal regions implicated in addictive processes. Volumetric, T1w MRIs were acquired from people with a diagnosis psychosis with (PwP + C = 28) or without (PwP - C = 26) a history of cannabis use; and Controls with (C + C = 16) or without (C - C = 22) cannabis use. We undertook vertex-based shape analysis of the brainstem, amygdala, hippocampus, globus pallidus, nucleus accumbens, caudate, putamen, thalamus using FSL FIRST. Clusters were defined through Threshold Free Cluster Enhancement and Family Wise Error was set at p < .05. We adjusted analyses for age, sex, tobacco and alcohol use. The putamen (bilaterally) and the right thalamus showed regional enlargement in PwP + C versus PwP - C. There were no areas of regional deflation. There were no significant differences between C + C and C - C. Cannabis use in participants with psychosis is associated with morphological alterations in subcortical structures. Putamen and thalamic enlargement may be related to compulsivity in patients with a history of cannabis use.


Subject(s)
Marijuana Use/pathology , Psychotic Disorders/pathology , Putamen/physiology , Thalamus/pathology , Adult , Female , Humans , Magnetic Resonance Imaging , Male , Psychotic Disorders/diagnostic imaging , Putamen/diagnostic imaging , Thalamus/diagnostic imaging , Young Adult
19.
Transl Psychiatry ; 10(1): 111, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317625

ABSTRACT

The associative striatum, an established substrate in psychosis, receives widespread glutamatergic projections. We sought to see if glutamatergic indices are altered between early psychosis patients with and without a history of cannabis use and characterise the relationship to grey matter. 92 participants were scanned: Early Psychosis with a history of cannabis use (EPC = 29); Early Psychosis with minimal cannabis use (EPMC = 25); Controls with a history of cannabis use (HCC = 16) and Controls with minimal use (HCMC = 22). Whole brain T1 weighted MR images and localised proton MR spectra were acquired from head of caudate, anterior cingulate and hippocampus. We examined relationships in regions with known high cannabinoid 1 receptor (CB1R) expression (grey matter, cortex, hippocampus, amygdala) and low expression (white matter, ventricles, brainstem) to caudate Glutamine+Glutamate (Glx). Patients were well matched in symptoms, function and medication. There was no significant group difference in Glx in any region. In EPC grey matter volume explained 31.9% of the variance of caudate Glx (p = 0.003) and amygdala volume explained 36.9% (p = 0.001) of caudate Glx. There was no significant relationship in EPMC. The EPC vs EPMC interaction was significant (p = 0.042). There was no such relationship in control regions. These results are the first to demonstrate association of grey matter volume and striatal glutamate in the EPC group. This may suggest a history of cannabis use leads to a conformational change in distal CB1 rich grey matter regions to influence striatal glutamatergic levels or that such connectivity predisposes to heavy cannabis use.


Subject(s)
Cannabis , Carcinoma, Hepatocellular , Liver Neoplasms , Psychotic Disorders , Glutamic Acid , Humans , Magnetic Resonance Imaging , Psychotic Disorders/diagnostic imaging
20.
Addict Biol ; 25(6): e12827, 2020 11.
Article in English | MEDLINE | ID: mdl-31478302

ABSTRACT

Cannabis use has been associated with adverse mental health outcomes, the neurochemical underpinnings of which are poorly understood. Although preclinical evidence suggests glutamatergic dysfunction following cannabis exposure in several brain regions including the hippocampus, evidence from human studies have been inconsistent. We investigated the effect of persistent cannabis use on the brain levels of N-acetyl aspartate (NAA) and myoinositol, the metabolite markers of neurons and glia, the site of the main central cannabinoid CB1 receptor, and the levels of glutamate, the neurotransmitter directly affected by CB1 modulation. We investigated cannabis users (CUs) who started using during adolescence, the period of greatest vulnerability to cannabis effects and focused on the hippocampus, where type 1 cannabinoid receptors (CBR1) are expressed in high density and have been linked to altered glutamatergic neurotransmission. Twenty-two adolescent-onset CUs and 21 nonusing controls (NU), completed proton magnetic resonance spectroscopy, to measure hippocampal metabolite concentrations. Glutamate, NAA, and myoinositol levels were compared between CU and NU using separate analyses of covariance. CU had significantly lower myoinositol but not glutamate or NAA levels in the hippocampus compared with NU. Myoinositol levels in CU positively correlated with glutamate levels, whereas this association was absent in NU. Altered myoinositol levels may be a marker of glia dysfunction and is consistent with experimental preclinical evidence that cannabinoid-induced glial dysfunction may underlie cannabinoid-induced memory impairments. Future studies using appropriate imaging techniques such as positron emission tomography should investigate whether glial dysfunction associated with cannabis use underlies hippocampal dysfunction and memory impairment in CUs.


Subject(s)
Cannabis/adverse effects , Glutamic Acid/metabolism , Hippocampus/metabolism , Marijuana Abuse/metabolism , Neuroglia/metabolism , Adult , Alcohol Oxidoreductases , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Biomarkers/metabolism , Female , Humans , Inositol/metabolism , Male , Neurons/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...