Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 26(9): 1203-1213.e13, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31231029

ABSTRACT

The mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolic processes. Dysregulation of this kinase complex can result in a variety of human diseases. Rapamycin and its analogs target mTORC1 directly; however, chronic treatment in certain cell types and in vivo results in the inhibition of both mTORC1 and mTORC2. We have developed a high-throughput cell-based screen for the detection of phosphorylated forms of the mTORC1 (4E-BP1, S6K1) and mTORC2 (Akt) substrates and have identified and characterized a chemical scaffold that demonstrates a profile consistent with the selective inhibition of mTORC1. Stable isotope labeling of amino acids in cell culture-based proteomic target identification revealed that class I glucose transporters were the primary target for these compounds yielding potent inhibition of glucose uptake and, as a result, selective inhibition of mTORC1. The link between the glucose uptake and selective mTORC1 inhibition are discussed in the context of a yet-to-be discovered glucose sensor.


Subject(s)
Glucose Transport Proteins, Facilitative/drug effects , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mechanistic Target of Rapamycin Complex 1/metabolism , Sirolimus/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical/methods , Glucose/metabolism , High-Throughput Screening Assays/methods , Humans , Mechanistic Target of Rapamycin Complex 2/drug effects , Mechanistic Target of Rapamycin Complex 2/metabolism , Mice , Mice, Inbred C57BL , Multiprotein Complexes/metabolism , Phosphorylation , Proteomics/methods , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Sirolimus/analogs & derivatives , Sirolimus/metabolism , Transcription Factors/metabolism
2.
J Med Chem ; 54(19): 6824-31, 2011 Oct 13.
Article in English | MEDLINE | ID: mdl-21916421

ABSTRACT

Sequential modification of the previously identified 4-[3-aryl-2,2-dioxido-2,1,3-benzothiadiazol-1(3H)-yl]-1-(methylamino)butan-2-ols led to the identification of a new series of 1-(2-morpholin-2-ylethyl)-3-aryl-1,3-dihydro-2,1,3-benzothiadiazole 2,2-dioxides that are potent and selective inhibitors of the norepinephrine transporter over both the serotonin and dopamine transporters. One representative compound 10b (WYE-114152) had low nanomolar hNET potency (IC(50) = 15 nM) and good selectivity for hNET over hSERT (>430-fold) and hDAT (>548-fold). 10b was additionally bioavailable following oral dosing and demonstrated efficacy in rat models of acute, inflammatory, and neuropathic pain.


Subject(s)
Analgesics/chemical synthesis , Benzothiazoles/chemical synthesis , Cyclic S-Oxides/chemical synthesis , Morpholines/chemical synthesis , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Thiadiazoles/chemical synthesis , Acute Pain/drug therapy , Administration, Oral , Analgesics/chemistry , Analgesics/pharmacology , Animals , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Biological Availability , Cell Line , Chronic Pain/drug therapy , Cricetinae , Cyclic S-Oxides/chemistry , Cyclic S-Oxides/pharmacology , Dogs , Humans , Inflammation/drug therapy , Inflammation/physiopathology , Injections, Intravenous , Male , Morpholines/chemistry , Morpholines/pharmacology , Neuralgia/drug therapy , Rats , Stereoisomerism , Thiadiazoles/chemistry , Thiadiazoles/pharmacology
3.
J Med Chem ; 53(11): 4511-21, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20462211

ABSTRACT

Structural modification of a virtual screening hit led to the identification of a new series of 4-[3-aryl-2,2-dioxido-2,1,3-benzothiadiazol-1(3H)-yl]-1-(methylamino)butan-2-ols which are potent and selective inhibitors of the norepinephrine transporter over both the serotonin and dopamine transporters. One representative compound S-17b (WYE-103231) had low nanomolar hNET potency (IC(50) = 1.2 nM) and excellent selectivity for hNET over hSERT (>1600-fold) and hDAT (>600-fold). S-17b additionally had a good pharmacokinetic profile and demonstrated oral efficacy in rat models of ovariectomized-induced thermoregulatory dysfunction and morphine dependent flush as well as the hot plate and spinal nerve ligation (SNL) models of acute and neuropathic pain.


Subject(s)
Cyclic S-Oxides/chemistry , Cyclic S-Oxides/pharmacology , Drug Discovery/methods , Neurotransmitter Uptake Inhibitors/chemistry , Neurotransmitter Uptake Inhibitors/pharmacology , Norepinephrine/metabolism , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Animals , Cell Line , Cyclic S-Oxides/chemical synthesis , Cyclic S-Oxides/pharmacokinetics , Female , Humans , Male , Neurotransmitter Uptake Inhibitors/chemical synthesis , Neurotransmitter Uptake Inhibitors/pharmacokinetics , Rats , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/pharmacokinetics
4.
Bioorg Med Chem ; 12(12): 3167-85, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15158785

ABSTRACT

Two approaches were developed to synthesize the novel 7-azaindolyl-heteroarylmaleimides. The first approach was based upon the palladium-catalyzed Suzuki cross-coupling or Stille cross-coupling of 2-chloro-maleimide 5 with various arylboronic acids or arylstannanes. The second approach was based upon the condensation of ethyl 7-azaindolyl-3-glyoxylate 12 with various acetamides. The hydroxypropyl-substituted 7-azaindolylmaleimide template was first used to screen different heteroaryls attached to the maleimide. Replacement of hydroxypropyl with different chain lengths and different functional groups were studied next. Many compounds synthesized were demonstrated to have high potency at GSK-3beta, good GS activity in HEK293 cells and good to excellent metabolic stability in human liver microsomes. Three representative compounds (21, 33, and 34) were demonstrated to have good selectivity against a panel of 80 kinase assays. Among them, compound 33 exhibited very weak inhibitions at the other 79 kinase assays, and behaved as a highly selective GSK-3beta inhibitor.


Subject(s)
Aza Compounds/chemical synthesis , Aza Compounds/pharmacology , Drug Design , Enzyme Inhibitors/chemical synthesis , Glycogen Synthase Kinase 3/antagonists & inhibitors , Maleimides/chemistry , Maleimides/pharmacology , Animals , Aza Compounds/chemistry , Cell Line , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Maleimides/chemical synthesis , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Molecular Structure , Rabbits , Substrate Specificity
5.
J Org Chem ; 69(8): 2809-15, 2004 Apr 16.
Article in English | MEDLINE | ID: mdl-15074932

ABSTRACT

1,10-Phenanthroline reacts with aldehydes and ketones in the presence of samarium diiodide to produce 2-(1-hydroxyalkyl)-1,10-phenanthrolines. The hydroxyalkyl substituent can be functionalized in numerous ways or removed to permit further ligand variation. The carbonyl coupling reaction can also be repeated to provide 2,9-disubstituted phenanthrolines. Taken together, these operations provide ready access to a large number of phenanthroline derivatives to serve as ligand libraries for catalyst exploration.

6.
J Med Chem ; 46(19): 4021-31, 2003 Sep 11.
Article in English | MEDLINE | ID: mdl-12954055

ABSTRACT

Attempts to design the macrocyclic maleimides as selective protein kinase C gamma inhibitors led to the unexpected discovery of a novel series of potent and highly selective glycogen synthase kinase-3beta (GSK-3beta) inhibitors. Palladium-catalyzed cross-coupling reactions were used to synthesize the key intermediates 17 and 22 that resulted in the synthesis of novel macrocycles. All three macrocyclic series (bisindolyl-, mixed 7-azaindoleindolyl-, and bis-7-azaindolylmaleimides) were found to have submicromolar inhibitory potency at GSK-3beta with various degrees of selectivity toward other protein kinases. To gain the inhibitory potency at GSK-3beta, the ring sizes of these macrocycles may play a major role. To achieve the selectivity at GSK-3beta, the additional nitrogen atoms in the indole rings may contribute to a significant degree. Overall, the bis-7-azaindolylmaleimides 28 and 29 exhibited little or no inhibitions to a panel of 50 protein kinases. Compound 29 almost behaved as a GSK-3beta specific inhibitor. Both 28 and 29 displayed good potency in GS cell-based assay. Molecular docking studies were conducted in an attempt to rationalize the GSK-3beta selectivity of azaindolylmaleimides.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Ethers, Cyclic/chemical synthesis , Ethers, Cyclic/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Maleimides/chemical synthesis , Maleimides/pharmacology , Adipocytes/cytology , Adipocytes/drug effects , Amino Acid Sequence , Animals , Cells, Cultured , Drug Design , Ethers, Cyclic/chemistry , Glycogen Synthase Kinase 3/metabolism , Hepatocytes/cytology , Hepatocytes/drug effects , Humans , Inhibitory Concentration 50 , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Maleimides/chemistry , Models, Molecular , Molecular Sequence Data , Protein Kinase Inhibitors , Protein Kinases/metabolism , Rats , Sequence Alignment , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...