Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e14928, 2023.
Article in English | MEDLINE | ID: mdl-36846459

ABSTRACT

Background: Orchid bees are abundant and widespread in the Neotropics, where males are important pollinators of orchids they visit to collect fragrant chemicals later used to court females. Assemblages of orchid bees have been intensively surveyed in parts of Central America, but less so in Belize, where we studied them during the late-wet and early-dry seasons of 2015-2020. Methods: Using bottle-traps baited with chemicals known to attract a variety of orchid bee species, we conducted surveys at sites varying in latitude, historical annual precipitation, elevation, and the presence of nearby agricultural activities. Each sample during each survey period consisted of the same number of traps and the same set of chemical baits, their positions randomized along transects. Results: In 86 samples, we collected 24 species in four genera: Euglossa (16 species), Eulaema (3), Eufriesea (3), and Exaerete (2). During our most extensive sampling (December 2016-February 2017), species diversity was not correlated with latitude, precipitation, or elevation; species richness was correlated only with precipitation (positively). However, a canonical correspondence analysis indicated that species composition of assemblages varied across all three environmental gradients, with species like Eufriesea concava, Euglossa imperialis, and Euglossa viridissima most common in the drier north, and Euglossa ignita, Euglossa purpurea, and Eulaema meriana more so in the wetter southeast. Other species, such as Euglossa tridentata and Eulaema cingulata, were common throughout the area sampled. Mean species diversity was higher at sites with agricultural activities than at sites separated from agricultural areas. A Chao1 analysis suggests that other species should yet be found at our sites, a conclusion supported by records from adjacent countries, as well as the fact that we often added new species with repeated surveys of the same sites up through early 2020, and with the use of alternative baits. Additional species may be especially likely if sampling occurs outside of the months/seasons that we have sampled so far.


Subject(s)
Hymenoptera , Female , Male , Bees , Animals , Belize , Seasons , Central America
2.
PeerJ ; 2: e314, 2014.
Article in English | MEDLINE | ID: mdl-24711966

ABSTRACT

Females of solitary, nest-provisioning bees have relatively low fecundity, but produce large eggs as part of their overall strategy of investing substantially in each offspring. In intraspecific comparisons of several species of solitary, nest-provisioning bees and wasps, the size of the mature eggs produced increases with female body size. We further examined oocyte size-body size correlations in the solitary bee Megachile rotundata (F.), an important crop pollinator. We hypothesized that larger females carry larger basal oocytes (i.e., those next in line to be oviposited) but that body size-oocyte size correlations would be absent soon after emergence, before their first eggs fully matured. Because egg production is likely affected by the quantity of stored lipids carried over from the bees' immature stages, we also tested the hypothesis that female body size is correlated with the body lipid content at adult emergence, the time during which oocyte growth accelerates. We found significant correlations of body size with oocyte size variables chosen to reflect: (1) the magnitude of the investment in the next egg to be laid (i.e., the length and volume of the basal oocyte) and (2) the longer term potential to produce mature oocytes (i.e., the summed lengths and volumes of the three largest oocytes in each female). Positive correlations existed throughout the nesting season, even during the first week following adult emergence. The ability to produce and carry larger oocytes may be linked to larger females starting the nesting season with greater lipid stores (which we document here) or to greater space within the abdomen of larger females. Compared to other species of solitary bees, M. rotundata appears to have (1) smaller oocytes than solitary nest-provisioning bees in general, (2) comparable oocyte sizes relative to congeners, and (3) larger oocytes than related brood parasitic megachilids.

3.
Environ Entomol ; 40(4): 917-30, 2011 Aug.
Article in English | MEDLINE | ID: mdl-22251693

ABSTRACT

Temperature plays an important role in effective management of the alfalfa leafcutting bee [Megachile rotundata (F.); Megachilidae], the major commercial pollinator of seed alfalfa [Medicago sativa (L.); Fabaceae] in North America. To improve our understanding of threshold and optimum rearing temperatures of M. rotundata, we examined the effect of temperature on postwintering development by using a greater number of temperature treatments than applied in previous studies (19 versus eight or fewer) and analytical tools formulated to model nonlinear relationships between temperature and insect development rates. We also tested the hypothesis that rearing temperature influences adult body lipid content at emergence, which could affect adult survival, establishment and performance as a pollinator, and reproductive success. We found that the Lactin-2 and Briere-2 models provided the best fits to data and gave reasonable estimates of lower (16-18°C) and upper (36-39°C) developmental thresholds and optimum (33-34°C) rearing temperatures for maximizing development rate. Bees successfully emerged over a broad range of temperatures (22-35°C), but variation in development rate among individuals reared at the same temperature was lowest at 31-33°C. The optimum rearing temperature to maximize the proportion of body lipids in adults was 27-29°C. Our results are discussed in relation to previous findings and speak to the difficulties in designing practical rearing guidelines that simultaneously maximize development rate, survival, and adult condition, while synchronizing adult emergence with alfalfa bloom.


Subject(s)
Bees/growth & development , Lipid Metabolism , Temperature , Animals , Bees/metabolism , Body Size , Female , Male , Regression Analysis , Sex Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...