Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 25(13): 3147-3155, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30051523

ABSTRACT

In this Concept article, recent advances are highlighted in the synthesis and applications of anomeric nucleophiles, a class of carbohydrates in which the C1 carbon bears a carbon-metal bond. First, the advantages of exploiting the carboanionic reactivity of carbohydrates and the methods for the synthesis of mono- and oligosaccharide stannanes are discussed. Second, recent developments in the glycosyl cross-coupling method resulting in the transfer of anomeric configuration from C1 stannanes to C-aryl glycosides are reviewed. These highly stereoretentive processes are ideally suited for the preparation of carbohydrate-based therapeutics and were demonstrated in the synthesis of antidiabetic drugs. Next, the application of the glycosyl cross-coupling method to the preparation of Se-glycosides and to glycodiversification of small molecules and peptides are highlighted. These reactions proceed with exclusive anomeric control for a broad range of substrates and tolerate carbohydrates with free hydroxyl groups. Taken together, anomeric nucleophiles have emerged as powerful tools for the synthesis of oligosaccharides and glycoconjugates and their future applications will open new possibilities to incorporate saccharides into small molecules and biologics.

2.
J Am Chem Soc ; 140(51): 18140-18150, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30475610

ABSTRACT

We report a stereoretentive cross-coupling reaction of configurationally stable nucleophiles with disulfide and N-sulfenylsuccinimide donors promoted by Cu(I). We demonstrate the utility of this method in the synthesis of thioglycosides derived from simple alkyl and aryl thiols, thioglycosides, and in the glycodiversification of cysteine residues in peptides. These reactions operate well with carbohydrate substrates containing common protective groups and reagents with free hydroxyl and secondary amide functionalities under standardized conditions. Competition experiments in combination with computational DFT studies established that the putative anomeric intermediate is an organocopper species that is configurationally stable and resistant to epimerization due to its short lifetime. The subsequent reductive elimination from the Cu(III) intermediate is rapid and stereoretentive. Taken together, the glycosyl cross-coupling is ideally suited for late stage glycodiversification and bioconjugation under highly controlled installation of the aliphatic carbon-sulfur bonds.

3.
Chem Asian J ; 13(20): 2978-2990, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30019854

ABSTRACT

Due to the central role played by carbohydrates in a multitude of biological processes, there has been a sustained interest in developing effective glycosylation methods to enable more thorough investigation of their essential functions. Among the myriad technologies available for stereoselective glycoside bond formation, dehydrative glycosylation possesses a distinct advantage given the unique properties of C1-alcohols such as straightforward preparation, stability, and a general reactivity compatible with a diverse set of reaction conditions. In this Focus Review, a survey of direct dehydrative glycosylations of C1-alcohols is provided with an emphasis on recent achievements, pervading limitations, mechanistic insights, and applications in total synthesis.

4.
Angew Chem Int Ed Engl ; 57(24): 7091-7095, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29671931

ABSTRACT

Reported is the stereospecific cross-coupling of anomeric stannanes with symmetrical diselenides, resulting in the synthesis of selenoglycosides with exclusive anomeric control. The reaction proceeds without the need for directing groups and is compatible with free hydroxy groups as demonstrated in the preparation of glycoconjugates derived from mono-, di-, and trisaccharides and peptides (35 examples). Given its generality and broad substrate scope, the glycosyl cross-coupling method presented herein can find use in the synthesis of selenium-containing glycomimetics and glycoconjugates.


Subject(s)
Glycoconjugates/chemical synthesis , Glycosides/chemical synthesis , Organoselenium Compounds/chemical synthesis , Chemistry Techniques, Synthetic , Glycoconjugates/chemistry , Glycosides/chemistry , Oligosaccharides/chemical synthesis , Oligosaccharides/chemistry , Organoselenium Compounds/chemistry , Peptides/chemical synthesis , Peptides/chemistry , Stereoisomerism , Tin Compounds/chemical synthesis , Tin Compounds/chemistry
5.
Nat Prod Rep ; 35(3): 220-229, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29513338

ABSTRACT

Review primarily covers from 1995-2018Carbohydrate function, recognized in a multitude of biological processes, provides a precedent for developing carbohydrate surrogates that mimic the structure and function of bioactive compounds. In order to constrain highly flexible oligosaccharides, synthetic tethering techniques like those exemplified by stapled peptides are utilized to varying degrees of success. Naturally occurring constrained carbohydrates, however, exist with noteworthy cytotoxic and chemosensitizing properties. This review highlights the structure, biology, and synthesis of this intriguing class of molecules.


Subject(s)
Oligosaccharides/chemistry , Oligosaccharides/pharmacology , Carbohydrate Conformation , Carbohydrates/chemical synthesis , Carbohydrates/chemistry , Chemistry Techniques, Synthetic , Drug Evaluation, Preclinical/methods , Drug Resistance, Neoplasm/drug effects , Glycosides/chemistry , Glycosylation , Humans , Lectins/metabolism , Oligosaccharides/chemical synthesis , Oligosaccharides/metabolism , Structure-Activity Relationship
6.
ACS Cent Sci ; 4(12): 1652-1662, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30648149

ABSTRACT

Replacement of a glycosidic bond with hydrolytically stable C-C surrogates is an efficient strategy to access glycomimetics with improved physicochemical and pharmacological properties. We describe here a stereoretentive cross-coupling reaction of glycosyl stannanes with C(sp2)- and C(sp3)-thio(seleno)esters suitable for the preparation C-acyl glycosides as synthetic building blocks to obtain C(sp3)-linked and fluorinated glycomimetics. First, we identified a set of standardized conditions employing a Pd(0) precatalyst, CuCl additive, and phosphite ligand that provided access to C-acyl glycosides without deterioration of anomeric integrity and decarbonylation of the acyl donors (>40 examples). Second, we demonstrated that C(sp3)-glycomimetics could be introduced into the anomeric position via a direct conversion of C1 ketones. Specifically, the conversion of the carbonyl group into a CF2 mimetic is an appealing method to access valuable fluorinated analogues. We also illustrate that the introduction of other carbonyl-based groups into the C1 position of mono- and oligosaccharides can be accomplished using the corresponding acyl donors. This protocol is amenable to late-stage glycodiversification and programmed mutation of the C-O bond into hydrolytically stable C-C bonds. Taken together, stereoretentive anomeric acylation represents a convenient method to prepare a diverse set of glycan mimetics with minimal synthetic manipulations and with absolute control of anomeric configuration.

7.
J Am Chem Soc ; 139(49): 17908-17922, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29148749

ABSTRACT

Stereoselective manipulations at the C1 anomeric position of saccharides are one of the central goals of preparative carbohydrate chemistry. Historically, the majority of reactions forming a bond with anomeric carbon has focused on reactions of nucleophiles with saccharide donors equipped with a leaving group. Here, we describe a novel approach to stereoselective synthesis of C-aryl glycosides capitalizing on the highly stereospecific reaction of anomeric nucleophiles. First, methods for the preparation of anomeric stannanes have been developed and optimized to afford both anomers of common saccharides in high anomeric selectivities. We established that oligosaccharide stannanes could be prepared from monosaccharide stannanes via O-glycosylation with Schmidt-type donors, glycal epoxides, or under dehydrative conditions with C1 alcohols. Second, we identified a general set of catalytic conditions with Pd2(dba)3 (2.5 mol%) and a bulky ligand (JackiePhos, 10 mol%) controlling the ß-elimination pathway. We demonstrated that the glycosyl cross-coupling resulted in consistently high anomeric selectivities for both anomers with mono- and oligosaccharides, deoxysugars, saccharides with free hydroxyl groups, pyranose, and furanose substrates. The versatility of the glycosyl cross-coupling reaction was probed in the total synthesis of salmochelins (siderophores) and commercial anti-diabetic drugs (gliflozins). Combined experimental and computational studies revealed that the ß-elimination pathway is suppressed for biphenyl-type ligands due to the shielding of Pd(II) by sterically demanding JackiePhos, whereas smaller ligands, which allow for the formation of a Pd-F complex, predominantly result in a glycal product. Similar steric effects account for the diminished rates of cross-couplings of 1,2-cis C1-stannanes with aryl halides. DFT calculations also revealed that the transmetalation occurs via a cyclic transition state with retention of configuration at the anomeric position. Taken together, facile access to both anomers of various glycoside nucleophiles, a broad reaction scope, and uniformly high transfer of anomeric configuration make the glycosyl cross-coupling reaction a practical tool for the synthesis of bioactive natural products, drug candidates, allowing for late-stage glycodiversification studies with small molecules and biologics.


Subject(s)
Glycosylation , Monosaccharides/chemistry , Monosaccharides/chemical synthesis , Biological Products/chemical synthesis , Biological Products/chemistry , Catalysis , Glycosides , Palladium/chemistry , Quantum Theory , Tin Compounds/chemical synthesis , Tin Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...