Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Front Immunol ; 15: 1412347, 2024.
Article in English | MEDLINE | ID: mdl-38863711

ABSTRACT

CARD-BCL10-MALT1 (CBM) signalosomes connect distal signaling of innate and adaptive immune receptors to proximal signaling pathways and immune activation. Four CARD scaffold proteins (CARD9, 10, 11, 14) can form seeds that nucleate the assembly of BCL10-MALT1 filaments in a cell- and stimulus-specific manner. MALT1 (also known as PCASP1) serves a dual function within the assembled CBM complexes. By recruiting TRAF6, MALT1 acts as a molecular scaffold that initiates IκB kinase (IKK)/NF-κB and c-Jun N-terminal kinase (JNK)/AP-1 signaling. In parallel, proximity-induced dimerization of the paracaspase domain activates the MALT1 protease which exerts its function by cleaving a set of specific substrates. While complete MALT1 ablation leads to immune deficiency, selective destruction of either scaffolding or protease function provokes autoimmune inflammation. Thus, balanced MALT1-TRAF6 recruitment and MALT1 substrate cleavage are critical to maintain immune homeostasis and to promote optimal immune activation. Further, MALT1 protease activity drives the survival of aggressive lymphomas and other non-hematologic solid cancers. However, little is known about the relevance of the cleavage of individual substrates for the pathophysiological functions of MALT1. Unbiased serendipity, screening and computational predictions have identified and validated ~20 substrates, indicating that MALT1 targets a quite distinct set of proteins. Known substrates are involved in CBM auto-regulation (MALT1, BCL10 and CARD10), regulation of signaling and adhesion (A20, CYLD, HOIL-1 and Tensin-3), or transcription (RelB) and mRNA stability/translation (Regnase-1, Roquin-1/2 and N4BP1), indicating that MALT1 often targets multiple proteins involved in similar cellular processes. Here, we will summarize what is known about the fate and functions of individual MALT1 substrates and how their cleavage contributes to the biological functions of the MALT1 protease. We will outline what is needed to better connect critical pathophysiological roles of the MALT1 protease with the cleavage of distinct substrates.


Subject(s)
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Signal Transduction , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Humans , Animals , Substrate Specificity , B-Cell CLL-Lymphoma 10 Protein/metabolism , B-Cell CLL-Lymphoma 10 Protein/genetics , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , Proteolysis , TNF Receptor-Associated Factor 6/metabolism
2.
Proc Natl Acad Sci U S A ; 120(48): e2309205120, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37988467

ABSTRACT

Constitutive activation of the MALT1 paracaspase in conventional T cells of Malt1TBM/TBM (TRAF6 Binding Mutant = TBM) mice causes fatal inflammation and autoimmunity, but the involved targets and underlying molecular mechanisms are unknown. We genetically rendered a single MALT1 substrate, the RNA-binding protein (RBP) Roquin-1, insensitive to MALT1 cleavage. These Rc3h1Mins/Mins mice showed normal immune homeostasis. Combining Rc3h1Mins/Mins alleles with those encoding for constitutively active MALT1 (TBM) prevented spontaneous T cell activation and restored viability of Malt1TBM/TBM mice. Mechanistically, we show how antigen/MHC recognition is translated by MALT1 into Roquin cleavage and derepression of Roquin targets. Increasing T cell receptor (TCR) signals inactivated Roquin more effectively, and only high TCR strength enabled derepression of high-affinity targets to promote Th17 differentiation. Induction of experimental autoimmune encephalomyelitis (EAE) revealed increased cleavage of Roquin-1 in disease-associated Th17 compared to Th1 cells in the CNS. T cells from Rc3h1Mins/Mins mice did not efficiently induce the high-affinity Roquin-1 target IκBNS in response to TCR stimulation, showed reduced Th17 differentiation, and Rc3h1Mins/Mins mice were protected from EAE. These data demonstrate how TCR signaling and MALT1 activation utilize graded cleavage of Roquin to differentially regulate target mRNAs that control T cell activation and differentiation as well as the development of autoimmunity.


Subject(s)
Autoimmunity , Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Inflammation/metabolism , Cell Differentiation , Encephalomyelitis, Autoimmune, Experimental/genetics , Receptors, Antigen, T-Cell/genetics , Ubiquitin-Protein Ligases
3.
Cancer Treat Rev ; 117: 102568, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37126937

ABSTRACT

The paracaspase MALT1 has emerged as a key regulator of immune signaling, which also promotes tumor development by both cancer cell-intrinsic and -extrinsic mechanisms. As an integral subunit of the CARD11-BCL10-MALT1 (CBM) signaling complex, MALT1 has an intriguing dual function in lymphocytes. MALT1 acts as a scaffolding protein to drive activation of NF-κB transcription factors and as a protease to modulate signaling and immune activation by cleavage of distinct substrates. Aberrant MALT1 activity is critical for NF-κB-dependent survival and proliferation of malignant cancer cells, which is fostered by paracaspase-catalyzed inactivation of negative regulators of the canonical NF-κB pathway like A20, CYLD and RelB. Specifically, B cell receptor-addicted lymphomas rely strongly on this cancer cell-intrinsic MALT1 protease function, but also survival, proliferation and metastasis of certain solid cancers is sensitive to MALT1 inhibition. Beyond this, MALT1 protease exercises a cancer cell-extrinsic role by maintaining the immune-suppressive function of regulatory T (Treg) cells in the tumor microenvironment (TME). MALT1 inhibition is able to convert immune-suppressive to pro-inflammatory Treg cells in the TME of solid cancers, thereby eliciting a robust anti-tumor immunity that can augment the effects of checkpoint inhibitors. Therefore, the cancer cell-intrinsic and -extrinsic tumor promoting MALT1 protease functions offer unique therapeutic opportunities, which has motivated the development of potent and selective MALT1 inhibitors currently under pre-clinical and clinical evaluation.


Subject(s)
NF-kappa B , Neoplasms , Humans , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , NF-kappa B/metabolism , Caspases/metabolism , Signal Transduction , Neoplasms/drug therapy
4.
Front Immunol ; 14: 1111398, 2023.
Article in English | MEDLINE | ID: mdl-36761777

ABSTRACT

MALT1 is a core component of the CARD11-BCL10-MALT1 (CBM) signalosome, in which it acts as a scaffold and a protease to bridge T cell receptor (TCR) ligation to immune activation. As a scaffold, MALT1 binds to TRAF6, and T cell-specific TRAF6 ablation or destruction of MALT1-TRAF6 interaction provokes activation of conventional T (Tconv) effector cells. In contrast, MALT1 protease activity controls the development and suppressive function of regulatory T (Treg) cells in a T cell-intrinsic manner. Thus, complete loss of TRAF6 or selective inactivation of MALT1 catalytic function in mice skews the immune system towards autoimmune inflammation, but distinct mechanisms are responsible for these immune disorders. Here we demonstrate that TRAF6 deletion or MALT1 paracaspase inactivation are highly interdependent in causing the distinct immune pathologies. We crossed mice with T cell-specific TRAF6 ablation (Traf6-ΔT) and mice with a mutation rendering the MALT1 paracaspase dead in T cells (Malt1 PD-T) to yield Traf6-ΔT;Malt1 PD-T double mutant mice. These mice reveal that the autoimmune inflammation caused by TRAF6-ablation relies strictly on the function of the MALT1 protease to drive the activation of Tconv cells. Vice versa, despite the complete loss of Treg cells in Traf6-ΔT;Malt1 PD-T double mutant mice, inactivation of the MALT1 protease is unable to cause autoinflammation, because the Tconv effector cells are not activated in the absence of TRAF6. Consequentially, combined MALT1 paracaspase inactivation and TRAF6 deficiency in T cells mirrors the immunodeficiency seen upon T cell-specific MALT1 ablation.


Subject(s)
Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Signal Transduction , TNF Receptor-Associated Factor 6 , Animals , Mice , Endopeptidases/metabolism , Homeostasis , Inflammation , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Peptide Hydrolases/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism
5.
Bio Protoc ; 12(10): e4423, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35813027

ABSTRACT

Although CRISPR-Cas9 genome editing can be performed directly in single-cell mouse zygotes, the targeting efficiency for more complex modifications such as the insertion of two loxP sites, multiple mutations in cis, or the precise insertion or deletion of longer DNA sequences often remains low (Cohen, 2016). Thus, targeting and validation of correct genomic modification in murine embryonic stem cells (ESCs) with subsequent injection into early-stage mouse embryos may still be preferable, allowing for large-scale screening in vitro before transfer of thoroughly characterized and genetically defined ESC clones into the germline. This procedure can result in a reduction of animal numbers with cost effectiveness and compliance with the 3R principle of animal welfare regulations. Here, we demonstrate that after transfection of homology templates and PX458 CRISPR-Cas9 plasmids, EGFP-positive ESCs can be sorted with a flow cytometer for the enrichment of CRISPR-Cas9-expressing cells. Cell sorting obviates antibiotic selection and therefore allows for more gentle culture conditions and faster outgrowth of ESC clones, which are then screened by qPCR for correct genomic modifications. qPCR screening is more convenient and less time-consuming compared to analyzing PCR samples on agarose gels. Positive ESC clones are validated by PCR analysis and sequencing and can serve for injection into early-stage mouse embryos for the generation of chimeric mice with germline transmission. Therefore, we describe here a simple and straightforward protocol for CRISPR-Cas9-directed gene targeting in ESCs. Graphical abstract.

6.
J Card Surg ; 37(7): 2127-2130, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35393639

ABSTRACT

There is an increasing use of left ventricular assist devices (LVADs) as bridge to transplantation or permanent destination therapy in the heart failure patient population. Infection remains a common complication in LVADs, with Gram-positive skin flora as predominant pathogens implicated, including Staphylococcus aureus. While there is emerging evidence for synergistic antibiotic combinations with methicillin resistant S. aureus, there remains a significant gap in the literature for persistent methicillin susceptible S. aureus bacteremia. In this article, we describe the first successful treatment of persistent LVAD-related bacteremia with salvage oxacillin plus ertapenem. The salvage therapy described here must be balanced by the risks for toxicity, impact on resistance, microbiota disruption, drug shortages, and patient costs. This combination warrants further evaluation in the clinical setting to better establish its role in our expanding patient population.


Subject(s)
Bacteremia , Heart-Assist Devices , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/etiology , Ertapenem/therapeutic use , Heart-Assist Devices/adverse effects , Humans , Methicillin/therapeutic use , Oxacillin/therapeutic use , Staphylococcal Infections/drug therapy , Staphylococcus aureus
7.
Sci Immunol ; 6(65): eabh2095, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34767456

ABSTRACT

Balanced control of T cell signaling is critical for adaptive immunity and protection from autoimmunity. By combining genetically engineered mouse models, biochemical analyses and pharmacological interventions, we describe an unexpected dual role of the tumor necrosis factor receptor­associated factor 6 (TRAF6) E3 ligase as both a positive and negative regulator of mucosa-associated lymphoid tissue 1 (MALT1) paracaspase. Although MALT1-TRAF6 recruitment is indispensable for nuclear factor κB signaling in activated T cells, TRAF6 counteracts basal MALT1 protease activity in resting T cells. In mice, loss of TRAF6-mediated homeostatic suppression of MALT1 protease leads to severe autoimmune inflammation, which is completely reverted by genetic or therapeutic inactivation of MALT1 protease function. Thus, TRAF6 functions as a molecular brake for MALT1 protease in resting T cells and a signaling accelerator for MALT1 scaffolding in activated T cells, revealing that TRAF6 controls T cell activation in a switch-like manner. Our findings have important implications for development and treatment of autoimmune diseases.


Subject(s)
Homeostasis/immunology , Inflammation/immunology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/immunology , TNF Receptor-Associated Factor 6/immunology , Animals , Female , Mice , Mice, Inbred C57BL , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , TNF Receptor-Associated Factor 6/genetics
8.
Expert Opin Ther Pat ; 31(12): 1079-1096, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34214002

ABSTRACT

INTRODUCTION: MALT1 is the only human paracaspase, a protease with unique cleavage activity and substrate specificity. As a key regulator of immune responses, MALT1 has attracted attention as an immune modulatory target for the treatment of autoimmune/inflammatory diseases. Further, chronic MALT1 protease activation drives survival of lymphomas, suggesting that MALT1 is a suitable drug target for lymphoid malignancies. Recent studies have indicated that MALT1 inhibition impairs immune suppressive function of regulatory T cells in the tumor microenvironment, suggesting that MALT1 inhibitors may boost anti-tumor immunity in the treatment of solid cancers. AREAS COVERED: This review summarizes the literature on MALT1 patents and applications. We discuss the potential therapeutic uses for MALT1 inhibitors based on patents and scientific literature. EXPERT OPINION: There has been a steep increase in MALT1 inhibitor patents. Compounds with high selectivity and good bioavailability have been developed. An allosteric binding pocket is the preferred site for potent and selective MALT1 targeting. MALT1 inhibitors have moved to early clinical trials, but toxicological studies indicate that long-term MALT1 inhibition can disrupt immune homeostasis and lead to autoimmunity. Even though this poses risks, preventing immune suppression may favor the use of MALT1 inhibitors in cancer immunotherapies.


Subject(s)
Caspase Inhibitors/pharmacology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Animals , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Caspase Inhibitors/adverse effects , Drug Development , Humans , Inflammation/drug therapy , Inflammation/immunology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Patents as Topic , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology
9.
Radiol Artif Intell ; 3(2): e200024, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33937858

ABSTRACT

PURPOSE: To determine how to optimize the delivery of machine learning techniques in a clinical setting to detect intracranial hemorrhage (ICH) on non-contrast-enhanced CT images to radiologists to improve workflow. MATERIALS AND METHODS: In this study, a commercially available machine learning algorithm that flags abnormal noncontrast CT examinations for ICH was implemented in a busy academic neuroradiology practice between September 2017 and March 2019. The algorithm was introduced in three phases: (a) as a "pop-up" widget on ancillary monitors, (b) as a marked examination in reading worklists, and (c) as a marked examination for reprioritization based on the presence of the flag. A statistical approach, which was based on a queuing theory, was implemented to assess the impact of each intervention on queue-adjusted wait and turnaround time compared with historical controls. RESULTS: Notification with a widget or flagging the examination had no effect on queue-adjusted image wait (P > .99) or turnaround time (P = .6). However, a reduction in queue-adjusted wait time was observed between negative (15.45 minutes; 95% CI: 15.07, 15.38) and positive (12.02 minutes; 95% CI: 11.06, 12.97; P < .0001) artificial intelligence-detected ICH examinations with reprioritization. Reduced wait time was present for all order classes but was greatest for examinations ordered as routine for both inpatients and outpatients because of their low priority. CONCLUSION: The approach used to present flags from artificial intelligence and machine learning algorithms to the radiologist can reduce image wait time and turnaround times.© RSNA, 2021See also the commentary by O'Connor and Bhalla in this issue.

11.
Proc Natl Acad Sci U S A ; 117(30): 18068-18078, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32661165

ABSTRACT

Mast cells and basophils are main drivers of allergic reactions and anaphylaxis, for which prevalence is rapidly increasing. Activation of these cells leads to a tightly controlled release of inflammatory mediators stored in secretory granules. The release of these granules is dependent on intracellular calcium (Ca2+) signals. Ca2+ release from endolysosomal compartments is mediated via intracellular cation channels, such as two-pore channel (TPC) proteins. Here, we uncover a mechanism for how TPC1 regulates Ca2+ homeostasis and exocytosis in mast cells in vivo and ex vivo. Notably, in vivo TPC1 deficiency in mice leads to enhanced passive systemic anaphylaxis, reflected by increased drop in body temperature, most likely due to accelerated histamine-induced vasodilation. Ex vivo, mast cell-mediated histamine release and degranulation was augmented upon TPC1 inhibition, although mast cell numbers and size were diminished. Our results indicate an essential role of TPC1 in endolysosomal Ca2+ uptake and filling of endoplasmic reticulum Ca2+ stores, thereby regulating exocytosis in mast cells. Thus, pharmacological modulation of TPC1 might blaze a trail to develop new drugs against mast cell-related diseases, including allergic hypersensitivity.


Subject(s)
Anaphylaxis/etiology , Anaphylaxis/metabolism , Calcium Channels/deficiency , Disease Susceptibility , Mast Cells/immunology , Mast Cells/metabolism , Biomarkers , Calcium Signaling , Cell Degranulation , Cytokines/metabolism , Genetic Predisposition to Disease , Histamine/metabolism , Immunoglobulin E/immunology , Inflammation Mediators/metabolism
12.
J Med Chem ; 63(8): 3996-4004, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32227886

ABSTRACT

Constitutive proteolytic activity of MALT1 is associated with highly aggressive B-cell lymphomas. Chemical tools that detect active MALT1 have been reported, but suffer from poor cell permeability and/or cross-reactivity with the cysteine protease cathepsin B. Here, we report that the non-natural amino acid pipecolinic acid in the P2 position of substrates and chemical probes leads to improved selectivity toward MALT1 and results in cell-permeable fluorescent probes.


Subject(s)
Amino Acids/chemical synthesis , Amino Acids/metabolism , Cell Membrane Permeability/drug effects , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/metabolism , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Amino Acids/pharmacology , Cell Line, Tumor , Cell Membrane Permeability/physiology , Drug Design , Fluorescent Dyes/pharmacology , Humans , Jurkat Cells , Protein Structure, Secondary , Protein Structure, Tertiary
13.
Curr Opin Cardiol ; 35(3): 289-294, 2020 05.
Article in English | MEDLINE | ID: mdl-32205476

ABSTRACT

PURPOSE OF REVIEW: Left ventricular assist devices (LVADs) have extended the life expectancy of patients with heart failure. The hemodynamic support afforded by LVADs in this population has also resulted in patients having prolonged ventricular arrhythmias. The purpose of this article is to review the mechanisms of ventricular arrhythmias in LVADs and the available management strategies. RECENT FINDINGS: Recent evidence suggests that prolonged ventricular arrhythmias may result in increased mortality in patients with LVADs. SUMMARY: Successful management of ventricular arrhythmias in patients with LVAD requires interdisciplinary collaboration between electrophysiology and heart failure specialists. Medical management, including changes to LVAD changes, heart failure medication management, and antiarrhythmics constitute the initial treatment for ventricular arrhythmias. Surgical or endocardial ablation are reasonable options if VAs are refractory.


Subject(s)
Heart Failure/therapy , Heart-Assist Devices , Anti-Arrhythmia Agents/therapeutic use , Arrhythmias, Cardiac/therapy , Hemodynamics , Humans
14.
Cell Rep ; 29(4): 873-888.e10, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31644910

ABSTRACT

The CARMA1/CARD11-BCL10-MALT1 (CBM) complex bridges T and B cell antigen receptor (TCR/BCR) ligation to MALT1 protease activation and canonical nuclear factor κB (NF-κB) signaling. Using unbiased mass spectrometry, we discover multiple serine phosphorylation sites in the MALT1 C terminus after T cell activation. Phospho-specific antibodies reveal that CBM-associated MALT1 is transiently hyper-phosphorylated upon TCR/CD28 co-stimulation. We identify a dual role for CK1α as a kinase that is essential for CBM signalosome assembly as well as MALT1 phosphorylation. Although MALT1 phosphorylation is largely dispensable for protease activity, it fosters canonical NF-κB signaling in Jurkat and murine CD4 T cells. Moreover, constitutive MALT1 phosphorylation promotes survival of activated B cell-type diffuse large B cell lymphoma (ABC-DLBCL) cells addicted to chronic BCR signaling. Thus, MALT1 phosphorylation triggers optimal NF-κB activation in lymphocytes and survival of lymphoma cells.


Subject(s)
Lymphocyte Activation , Lymphoma, Large B-Cell, Diffuse/immunology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Signal Transduction , T-Lymphocytes/immunology , Amino Acid Motifs , Animals , B-Cell CLL-Lymphoma 10 Protein/metabolism , CARD Signaling Adaptor Proteins/metabolism , CD28 Antigens/metabolism , Casein Kinase Ialpha/metabolism , Cells, Cultured , Guanylate Cyclase/metabolism , HEK293 Cells , Humans , Jurkat Cells , Mice , Mice, Inbred C57BL , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/chemistry , NF-kappa B/metabolism , Phosphorylation
15.
Neuroimaging Clin N Am ; 27(4): 685-696, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28985937

ABSTRACT

Traumatic brain injury (TBI) is an important public health issue. TBI includes a broad spectrum of injury severities and abnormalities. Functional MR imaging (fMR imaging), both resting state (rs) and task, has been used often in research to study the effects of TBI. Although rs-fMR imaging is not currently applicable in clinical diagnosis of TBI, computer-aided tools are making this a possibility for the future. Specifically, graph theory is being used to study the change in networks after TBI. Machine learning methods allow researchers to build models capable of predicting injury severity and recovery trajectories.


Subject(s)
Brain Injuries/diagnostic imaging , Brain Injuries/physiopathology , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/physiopathology , Humans , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Rest
18.
Acta Neuropathol Commun ; 4(1): 55, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27229317

ABSTRACT

The adaptor protein NHERF1 (Na/H exchanger-3 regulatory factor-1) and its associated ezrin-radixin-moesin-merlin/neurofibromin-2 (ERM-NF2) family proteins are required for epithelial morphogenesis and have been implicated in cancer progression. NHERF1 is expressed in ependymal cells and constitutes a highly sensitive diagnostic marker for ependymoma, where it labels membrane polarity structures. Since NHERF1 and ERM-NF2 proteins show polarized expression in choroid plexus (CP) cells, we tested their diagnostic utility in CP neoplasms. NHERF1 immunohistochemistry in 43 adult and pediatric tumors with papillary morphology revealed strong apical plasma membrane staining in CP papilloma (WHO grade I) and cytoplasmic expression in CP carcinoma (WHO grade III). Ezrin and moesin showed similar but less distinctive staining. NHERF1 also labeled papillary tumors of the pineal region in a microlumen and focal apical membrane pattern, suggestive of a transitional morphology between CP papilloma and ependymoma. CP tumors of all grades could be differentiated from metastatic carcinomas with papillary architecture by NF2, which showed polarized membranous staining in CP tumors. NHERF1 and NF2 immunohistochemistry showed enhanced sensitivity and specificity for CP tumors compared to commonly used markers, including cytokeratins and Kir7.1, emerging as reliable diagnostic tools for the differential diagnosis of papillary tumors of the central nervous system.


Subject(s)
Choroid Plexus Neoplasms/metabolism , Neurofibromin 2/metabolism , Phosphoproteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , Adult , Aged , Biomarkers, Tumor/metabolism , Carcinoma/metabolism , Carcinoma/pathology , Cell Membrane/metabolism , Cell Membrane/pathology , Child , Child, Preschool , Choroid Plexus Neoplasms/pathology , Diagnosis, Differential , Ependymoma/metabolism , Ependymoma/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Infant , Male , Middle Aged , Neoplasm Grading , Papilloma/metabolism , Papilloma/pathology , Sensitivity and Specificity , Young Adult
19.
Skelet Muscle ; 5: 27, 2015.
Article in English | MEDLINE | ID: mdl-26301073

ABSTRACT

BACKGROUND: The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. METHODS: We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. RESULTS: Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1 double deficiency phenocopied the severe muscle pathologies observed in dystrophin/dysferlin-double null mice. Consistent with a model that GRAF1 facilitates dysferlin-dependent membrane patching, we found that GRAF1 associates with and regulates plasma membrane deposition of dysferlin. CONCLUSIONS: Overall, our work indicates that GRAF1 facilitates dysferlin-dependent membrane repair following acute muscle injury. These findings indicate that GRAF1 might play a role in the phenotypic variation and pathological progression of cardiac and skeletal muscle degeneration in muscular dystrophy patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...