Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35062621

ABSTRACT

To produce flawless glass containers, continuous monitoring of the glass gob is required. It is essential to ensure production of molten glass gobs with the right shape, temperature, viscosity and weight. At present, manual monitoring is common practice in the glass container industry, which heavily depends on previous experience, operator knowledge and trial and error. This results in inconsistent measurements and consequently loss of production. In this article, a multi-camera based setup is used as a non-invasive real-time monitoring system. We have shown that under certain conditions, such as keeping the glass composition constant, it is possible to do in-line measurement of viscosity using sensor fusion to correlate the rate of geometrical change in the gob and its temperature. The correlation models presented in this article show that there is a strong correlation, i.e., 0.65, between our measurements and the projected viscosity.

2.
Diagnostics (Basel) ; 13(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36611363

ABSTRACT

Skin cancers are the most cancers diagnosed worldwide, with an estimated > 1.5 million new cases in 2020. Use of computer-aided diagnosis (CAD) systems for early detection and classification of skin lesions helps reduce skin cancer mortality rates. Inspired by the success of the transformer network in natural language processing (NLP) and the deep convolutional neural network (DCNN) in computer vision, we propose an end-to-end CNN transformer hybrid model with a focal loss (FL) function to classify skin lesion images. First, the CNN extracts low-level, local feature maps from the dermoscopic images. In the second stage, the vision transformer (ViT) globally models these features, then extracts abstract and high-level semantic information, and finally sends this to the multi-layer perceptron (MLP) head for classification. Based on an evaluation of three different loss functions, the FL-based algorithm is aimed to improve the extreme class imbalance that exists in the International Skin Imaging Collaboration (ISIC) 2018 dataset. The experimental analysis demonstrates that impressive results of skin lesion classification are achieved by employing the hybrid model and FL strategy, which shows significantly high performance and outperforms the existing work.

3.
J Imaging ; 7(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34940723

ABSTRACT

Powered wheelchairs have enhanced the mobility and quality of life of people with special needs. The next step in the development of powered wheelchairs is to incorporate sensors and electronic systems for new control applications and capabilities to improve their usability and the safety of their operation, such as obstacle avoidance or autonomous driving. However, autonomous powered wheelchairs require safe navigation in different environments and scenarios, making their development complex. In our research, we propose, instead, to develop contactless control for powered wheelchairs where the position of the caregiver is used as a control reference. Hence, we used a depth camera to recognize the caregiver and measure at the same time their relative distance from the powered wheelchair. In this paper, we compared two different approaches for real-time object recognition using a 3DHOG hand-crafted object descriptor based on a 3D extension of the histogram of oriented gradients (HOG) and a convolutional neural network based on YOLOv4-Tiny. To evaluate both approaches, we constructed Miun-Feet-a custom dataset of images of labeled caregiver's feet in different scenarios, with backgrounds, objects, and lighting conditions. The experimental results showed that the YOLOv4-Tiny approach outperformed 3DHOG in all the analyzed cases. In addition, the results showed that the recognition accuracy was not improved using the depth channel, enabling the use of a monocular RGB camera only instead of a depth camera and reducing the computational cost and heat dissipation limitations. Hence, the paper proposes an additional method to compute the caregiver's distance and angle from the Powered Wheelchair (PW) using only the RGB data. This work shows that it is feasible to use the location of the caregiver's feet as a control signal for the control of a powered wheelchair and that it is possible to use a monocular RGB camera to compute their relative positions.

4.
J Imaging ; 7(11)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34821858

ABSTRACT

Object detection for sky surveillance is a challenging problem due to having small objects in a large volume and a constantly changing background which requires high resolution frames. For example, detecting flying birds in wind farms to prevent their collision with the wind turbines. This paper proposes a YOLOv4-based ensemble model for bird detection in grayscale videos captured around wind turbines in wind farms. In order to tackle this problem, we introduce two datasets-(1) Klim and (2) Skagen-collected at two locations in Denmark. We use Klim training set to train three increasingly capable YOLOv4 based models. Model 1 uses YOLOv4 trained on the Klim dataset, Model 2 introduces tiling to improve small bird detection, and the last model uses tiling and temporal stacking and achieves the best mAP values on both Klim and Skagen datasets. We used this model to set up an ensemble detector, which further improves mAP values on both datasets. The three models achieve testing mAP values of 82%, 88%, and 90% on the Klim dataset. mAP values for Model 1 and Model 3 on the Skagen dataset are 60% and 92%. Improving object detection accuracy could mitigate birds' mortality rate by choosing the locations for such establishment and the turbines location. It can also be used to improve the collision avoidance systems used in wind energy facilities.

5.
Sensors (Basel) ; 21(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546437

ABSTRACT

High temperatures complicate the direct measurements needed for continuous characterization of the properties of molten materials such as glass. However, the assumption that geometrical changes when the molten material is in free-fall can be correlated with material characteristics such as viscosity opens the door to a highly accurate contactless method characterizing small dynamic changes. This paper proposes multi-camera setup to achieve accuracy close to the segmentation error associated with the resolution of the images. The experimental setup presented shows that the geometrical parameters can be characterized dynamically through the whole free-fall process at a frame rate of 600 frames per second. The results achieved show the proposed multi-camera setup is suitable for estimating the length of free-falling molten objects.

6.
Sensors (Basel) ; 21(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33572869

ABSTRACT

3D object recognition is an generic task in robotics and autonomous vehicles. In this paper, we propose a 3D object recognition approach using a 3D extension of the histogram-of-gradients object descriptor with data captured with a depth camera. The presented method makes use of synthetic objects for training the object classifier, and classify real objects captured by the depth camera. The preprocessing methods include operations to achieve rotational invariance as well as to maximize the recognition accuracy while reducing the feature dimensionality at the same time. By studying different preprocessing options, we show challenges that need to be addressed when moving from synthetic to real data. The recognition performance was evaluated with a real dataset captured by a depth camera and the results show a maximum recognition accuracy of 81.5%.

7.
Sensors (Basel) ; 19(23)2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31775371

ABSTRACT

The Internet of Things has grown quickly in the last few years, with a variety of sensing, processing and storage devices interconnected, resulting in high data traffic. While some sensors such as temperature, or humidity sensors produce a few bits of data periodically, imaging sensors output data in the range of megabytes every second. This raises a complexity for battery operated smart cameras, as they would be required to perform intensive image processing operations on large volumes of data, within energy consumption constraints. By using intelligence partitioning we analyse the effects of different partitioning scenarios for the processing tasks between the smart camera node, the fog computing layer and cloud computing, in the node energy consumption as well as the real time performance of the WVSN (Wireless Vision Sensor Node). The results obtained show that traditional design space exploration approaches are inefficient for WVSN, while intelligence partitioning enhances the energy consumption performance of the smart camera node and meets the timing constraints.

SELECTION OF CITATIONS
SEARCH DETAIL
...