Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 7(4): 537-45, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11345432

ABSTRACT

Although the hammerhead reaction proceeds most efficiently in divalent cations, cleavage in 4 M LiCl is only approximately 10-fold slower than under standard conditions of 10 mM MgCl2 (Murray et al., Chem Biol, 1998, 5:587-595; Curtis & Bartel, RNA, 2001, this issue, pp. 546-552). To determine if the catalytic mechanism with high concentrations of monovalent cations is similar to that with divalent cations, we compared the activities of a series of modified hammerhead ribozymes in the two ionic conditions. Nearly all of the modifications have similar deleterious effects under both reaction conditions, suggesting that the hammerhead adopts the same general catalytic structure with both monovalent and divalent cations. However, modification of three ligands previously implicated in the binding of a functional divalent metal ion have substantially smaller effects on the cleavage rate in Li+ than in Mg2+. This result suggests that an interaction analogous to the interaction made by this divalent metal ion is absent in the monovalent reaction. Although the contribution of this divalent metal ion to the overall reaction rate is relatively modest, its presence is needed to achieve the full catalytic rate. The role of this ion appears to be in facilitating formation of the active structure, and any direct chemical role of metal ions in hammerhead catalysis is small.


Subject(s)
Cations, Divalent , Cations, Monovalent , RNA, Catalytic/metabolism , Base Sequence , Cadmium/pharmacology , Catalysis , Lithium/pharmacology , Magnesium/pharmacology , Models, Molecular , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , RNA, Catalytic/chemistry , RNA, Catalytic/genetics
2.
J Cell Biochem ; 72(1): 56-66, 1999 Jan 01.
Article in English | MEDLINE | ID: mdl-10025667

ABSTRACT

Parental Chinese hamster ovary (CHO) cells were mutagenized and subjected first to a mannose suicide selection technique and second to a screen of individual colonies grown on polyester discs for reduced mannose incorporation into protein. The incorporation of radioactivity for the selection and the screen was conducted at 41.5 degrees C instead of the normal growth temperature of 34 degrees C in order to allow for the isolation of temperature-sensitive lesions. This selection/screening procedure resulted in the isolation of M15-4 cells, which had three- to five-fold lower incorporation of [2-3H]mannose into mannose 6-phosphate, mannose 1-phosphate, GDP-mannose, oligosaccharide-lipid, and glycoprotein at 41.5 degrees C. We detected no difference in the qualitative pattern of mannose-labeled lipid-linked oligosaccharides compared to parental cells. M15-4 cells synthesized dolichol. The defect of M15-4 cells was determined to be in hexokinase activity; crude cytosolic extracts were eight- to nine-fold lower in hexokinase activity in M15-4 cells compared to parental cells. As a result of this defect, incorporation of labeled mannose from the medium was significantly decreased. However, the level of GDP-mannose in M15-4 cells was 70% of normal. The phenotype of M15-4 was a lower specific activity of labeled GDP-mannose, not a substantial reduction in the level of GDP-mannose. Consistent with these results, no alterations in the glycosylation of a model glycoprotein, G protein of vesicular stomatitis virus, were observed. These cells grew slower than parental cells, especially in low-glucose medium.


Subject(s)
Guanosine Diphosphate Mannose/metabolism , Hexokinase/deficiency , Membrane Glycoproteins , Animals , CHO Cells , Cell Division/genetics , Cricetinae , Glucose/metabolism , Glycosylation , Hexokinase/genetics , Mannose/metabolism , Oligosaccharides/metabolism , Phenotype , Temperature , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
3.
Glycobiology ; 9(1): 65-72, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9884408

ABSTRACT

A CHO mutant MI8-5 was found to synthesize Man9-GlcNAc2-P-P-dolichol rather than Glc3Man9GlcNAc2-P-P-dolichol as the oligosaccharide-lipid intermediate in N-glycosylation of proteins. MI8-5 cells were incubated with labeled mevalonate, and the prenol was found to be dolichol. The mannose-labeled oligosaccharide released from oligosaccharide-lipid of MI8-5 cells was analyzed by HPLC and alpha-mannosidase treatment, and the data were consistent with a structure of Man9GlcNAc2. In addition, MI8-5 cells did not incorporate radioactivity into oligosaccharide-lipid during an incubation with tritiated galactose, again consistent with MI8-5 cells synthesizing an unglucosylated oligosaccharide-lipid. MI8-5 cells had parental levels of glucosylphosphoryldolichol synthase activity. However, in two different assays, MI8-5 cells lacked dolichol-P-Glc:Man9GlcNAc2-P-P-dolichol glucosyltransferase activity. MI8-5 cells were found to synthesize glucosylated oligosaccharide after they were transfected with Saccharomyces cerevisiae ALG 6, the gene for dolichol-P-Glc:Man9GlcNAc2-P-P-dolichol glucosyltransferase. MI8-5 cells were found to incorporate mannose into protein 2-fold slower than parental cells and to approximately a 2-fold lesser extent.


Subject(s)
CHO Cells/metabolism , Glucosyltransferases/deficiency , Mannose/metabolism , Oligosaccharides/metabolism , Proteins/metabolism , Animals , Chromatography, High Pressure Liquid , Cricetinae , Gene Expression , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycosylation , Kinetics , Mutation , Polyisoprenyl Phosphate Sugars/biosynthesis , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...