Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17416, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833337

ABSTRACT

Central Arctic, interglacial intervals have traditionally been associated with diverse and intense bioturbation, and abundant foraminifera, interpreted as indicating relatively low sea-ice concentrations and productive surface waters, while glacial intervals, typically barren, support the inverse. In this respect, the Yermak Plateau is anomalous. Biomarker studies suggest that glacial intervals were characterized by comparatively open water, while interglacials are marked by severe sea-ice conditions. Here we study downcore Ethological Ichno Quotient (EIQ) variations in trace fossils and bioturbation to test the hypothesis that different ethological classes vary in accordance with late Pleistocene changes in sea-ice extent, with deposit feeders increasing during reduced sea-ice cover and chemosymbiotic traces increasing during periods of thick perennial sea-ice conditions. Our results generally demonstrate that the abundance of traces like Planolites, Scolicia, and burrows produced by deposit feeders increase during episodes of seasonal sea-ice cover. In contrast, intervals with more severe sea-ice conditions are characterized by chemosymbiotic traces such as Chondrites and Trichichnus/Mycellia, suggesting lower food delivery and poorly ventilated bottom water conditions. The study thus confirms previous reconstructions of sea-ice conditions on the Yermak Plateau during interglacials, demonstrating that bioturbation variation provides insights into bentho-pelagic coupling under variable sea ice regimes in the Arctic Ocean.


Subject(s)
Ice Cover , Water , Arctic Regions
2.
Sci Adv ; 6(42)2020 Oct.
Article in English | MEDLINE | ID: mdl-33067229

ABSTRACT

Carbon cycle models suggest that past warming events in the Arctic may have caused large-scale permafrost thaw and carbon remobilization, thus affecting atmospheric CO2 levels. However, observational records are sparse, preventing spatially extensive and time-continuous reconstructions of permafrost carbon release during the late Pleistocene and early Holocene. Using carbon isotopes and biomarkers, we demonstrate that the three most recent warming events recorded in Greenland ice cores-(i) Dansgaard-Oeschger event 3 (~28 ka B.P.), (ii) Bølling-Allerød (14.7 to 12.9 ka B.P.), and (iii) early Holocene (~11.7 ka B.P.)-caused massive remobilization and carbon degradation from permafrost across northeast Siberia. This amplified permafrost carbon release by one order of magnitude, particularly during the last deglaciation when global sea-level rise caused rapid flooding of the land area thereafter constituting the vast East Siberian Arctic Shelf. Demonstration of past warming-induced release of permafrost carbon provides a benchmark for the sensitivity of these large carbon pools to changing climate.

3.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190358, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-32862806

ABSTRACT

The Arctic Ocean region is currently undergoing dramatic changes, which will likely alter the nutrient cycles that underpin Arctic marine ecosystems. Phosphate is a key limiting nutrient for marine life but gaps in our understanding of the Arctic phosphorus (P) cycle persist. In this study, we investigate the benthic burial and recycling of phosphorus using sediments and pore waters from the Eurasian Arctic margin, including the Barents Sea slope and the Yermak Plateau. Our results highlight that P is generally lost from sediments with depth during organic matter respiration. On the Yermak Plateau, remobilization of P results in a diffusive flux of P to the seafloor of between 96 and 261 µmol m-2 yr-1. On the Barents Sea slope, diffusive fluxes of P are much larger (1736-2449 µmol m-2 yr-1), but these fluxes are into near-surface sediments rather than to the bottom waters. The difference in cycling on the Barents Sea slope is controlled by higher fluxes of fresh organic matter and active iron cycling. As changes in primary productivity, ocean circulation and glacial melt continue, benthic P cycling is likely to be altered with implications for P imported into the Arctic Ocean Basin. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Subject(s)
Ice Cover/chemistry , Phosphorus/analysis , Arctic Regions , Diffusion , Ecosystem , Geologic Sediments/chemistry , Global Warming , Iron/analysis , Norway , Organic Chemicals/analysis , Seasons , Seawater/chemistry
4.
Global Biogeochem Cycles ; 33(1): 2-14, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31007381

ABSTRACT

Climate warming is expected to destabilize permafrost carbon (PF-C) by thaw-erosion and deepening of the seasonally thawed active layer and thereby promote PF-C mineralization to CO2 and CH4. A similar PF-C remobilization might have contributed to the increase in atmospheric CO2 during deglacial warming after the last glacial maximum. Using carbon isotopes and terrestrial biomarkers (Δ14C, δ13C, and lignin phenols), this study quantifies deposition of terrestrial carbon originating from permafrost in sediments from the Chukchi Sea (core SWERUS-L2-4-PC1). The sediment core reconstructs remobilization of permafrost carbon during the late Allerød warm period starting at 13,000 cal years before present (BP), the Younger Dryas, and the early Holocene warming until 11,000 cal years BP and compares this period with the late Holocene, from 3,650 years BP until present. Dual-carbon-isotope-based source apportionment demonstrates that Ice Complex Deposit-ice- and carbon-rich permafrost from the late Pleistocene (also referred to as Yedoma)-was the dominant source of organic carbon (66 ± 8%; mean ± standard deviation) to sediments during the end of the deglaciation, with fluxes more than twice as high (8.0 ± 4.6 g·m-2·year-1) as in the late Holocene (3.1 ± 1.0 g·m-2·year-1). These results are consistent with late deglacial PF-C remobilization observed in a Laptev Sea record, yet in contrast with PF-C sources, which at that location were dominated by active layer material from the Lena River watershed. Release of dormant PF-C from erosion of coastal permafrost during the end of the last deglaciation indicates vulnerability of Ice Complex Deposit in response to future warming and sea level changes.

5.
Nature ; 524(7563): 84-7, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26245581

ABSTRACT

Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO2) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 ± 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of 2.2(+1.3)(-0.9) teragrams of carbon per year from the Mackenzie River, which is three times the CO2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO2 sink.


Subject(s)
Carbon Cycle , Carbon Dioxide/analysis , Carbon Sequestration , Carbon/analysis , Arctic Regions , Atmosphere/chemistry , Environmental Monitoring , Geologic Sediments/chemistry , Particulate Matter/analysis , Particulate Matter/chemistry , Rivers/chemistry , Silicates/analysis , Soil/chemistry , Time Factors , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...