Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673958

ABSTRACT

The prevalence of diseases characterised by eosinophilia is on the rise, emphasising the importance of understanding the role of eosinophils in these conditions. Eosinophils are a subset of granulocytes that contribute to the body's defence against bacterial, viral, and parasitic infections, but they are also implicated in haemostatic processes, including immunoregulation and allergic reactions. They contain cytoplasmic granules which can be selectively mobilised and secrete specific proteins, including chemokines, cytokines, enzymes, extracellular matrix, and growth factors. There are multiple biological and emerging functions of these specialised immune cells, including cancer surveillance, tissue remodelling and development. Several oral diseases, including oral cancer, are associated with either tissue or blood eosinophilia; however, their exact mechanism of action in the pathogenesis of these diseases remains unclear. This review presents a comprehensive synopsis of the most recent literature for both clinicians and scientists in relation to eosinophils and oral diseases and reveals a significant knowledge gap in this area of research.


Subject(s)
Eosinophils , Mouth Diseases , Humans , Eosinophils/immunology , Eosinophils/metabolism , Mouth Diseases/immunology , Mouth Diseases/pathology , Animals , Eosinophilia/immunology , Eosinophilia/metabolism , Eosinophilia/pathology , Cytokines/metabolism
2.
Cancers (Basel) ; 13(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34572737

ABSTRACT

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the world's most lethal cancers. An increase in occurrence, coupled with, presently limited treatment options, necessitates the pursuit of new therapeutic approaches. Many human cancers, including PDAC are initiated by unresolved inflammation. The transcription factor NF-κB coordinates many signals that drive cellular activation and proliferation during immunity but also those involved in inflammation and autophagy which may instigate tumorigenesis. It is not surprising therefore, that activation of canonical and non-canonical NF-κB pathways is increasingly recognized as an important driver of pancreatic injury, progression to tumorigenesis and drug resistance. Paradoxically, NF-κB dysregulation has also been shown to inhibit pancreatic inflammation and pancreatic cancer, depending on the context. A pro-oncogenic or pro-suppressive role for individual components of the NF-κB pathway appears to be cell type, microenvironment and even stage dependent. This review provides an outline of NF-κB signaling, focusing on the role of the various NF-κB family members in the evolving inflammatory PDAC microenvironment. Finally, we discuss pharmacological control of NF-κB to curb inflammation, focussing on novel anti-cancer agents which reinstate the process of cancer cell death, the Smac mimetics and their pre-clinical and early clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...