Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson ; 311: 106681, 2020 02.
Article in English | MEDLINE | ID: mdl-31923765

ABSTRACT

A receive-only surface coil array for 3 Tesla integrating a high-permittivity material (HPM) with a relative permittivity of 660 was designed and constructed and subsequently its performance was evaluated and compared in terms of transmit field efficiency and specific absorption ratio (SAR) during transmission, and signal-to-noise ratio during reception, with a conventional identically-sized surface coil array. Finite-difference time-domain simulations, bench measurements and in-vivo neck imaging on three healthy volunteers were performed using a three-element surface coil array with integrated HPMs placed around the larynx. Simulation results show an increase in local transmit efficiency of the body coil of ~10-15% arising from the presence of the HPM. The receiver efficiency also increased by approximately 15% close to the surface. Phantom experiments confirmed these results. In-vivo scans using identical transmit power resulted in SNR gains throughout the laryngeal area when compared with the conventional surface coil array. In particular specifically around the carotid arteries an average SNR gain of 52% was measured averaged over the three subjects, while in the spine an average of 20% SNR gain was obtained.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Neck/diagnostic imaging , Algorithms , Carotid Arteries/diagnostic imaging , Computer Simulation , Electromagnetic Fields , Equipment Design , Finite Element Analysis , Healthy Volunteers , Humans , Image Enhancement , Larynx/diagnostic imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Spine/diagnostic imaging
2.
Magn Reson Med ; 79(3): 1781-1788, 2018 03.
Article in English | MEDLINE | ID: mdl-28635034

ABSTRACT

PURPOSE: Dielectric resonator antenna (DRAs) are compact structures that exhibit low coupling between adjacent elements and therefore can be used as MRI transmit arrays. In this study, we use very high permittivity materials to construct modular flexible transceive arrays of a variable numbers of elements for operation at 7T. METHODS: DRAs were constructed using rectangular blocks of ceramic (lead zirconate titanate, εr = 1070) with the transverse electric (TE)01 mode tuned to 298 MHz. Finite-difference time-domain simulations were used to determine the B1 and specific absorption rate distributions. B1+ maps were acquired in a phantom to validate the simulations. Performance was compared to an equally sized surface coil. In vivo images were acquired of the wrist (four elements), ankle (seven elements), and calf muscle (16 elements). RESULTS: Coupling between DRAs spaced 5 mm apart on a phantom was -18.2 dB compared to -9.1 dB for equivalently spaced surface coils. DRAs showed a higher B1+ intensity close to the antenna but a lower penetration depth compared to the surface coil. CONCLUSION: DRAs show very low coupling compared to equally sized surface coils and can be used in transceive arrays without requiring decoupling networks. The penetration depth of the current DRA geometry means they are ideally suited to imaging of extremities. Magn Reson Med 79:1781-1788, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Computer Simulation , Electric Conductivity , Equipment Design , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...