Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
ACS Nano ; 17(15): 14586-14603, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37463491

ABSTRACT

It has been shown that inhalation exposure to copper oxide nanoparticles (CuO NPs) results in pulmonary inflammation. However, immunomodulatory consequences after CuO NP inhalation exposure have been less explored. We tested the effect of CuO NP aerosols on immune responses in healthy, house dust mite (HDM) asthmatic, or allergen immunotherapy (AIT)-treated asthmatic mice (BALB/c, females). The AIT consisted of a vaccine comprising HDM allergens and CpG-loaded nanoparticles (CpG NPs). AIT treatment involved mice being immunized (via subcutaneous (sc) injection; 2 doses) while concomitantly being exposed to CuO NP aerosols (over a 2 week period), starting on the day of the first vaccination. Mice were then sensitized twice by sc injection and subsequently challenged with HDM extract 10 times by intranasal instillation. The asthmatic model followed the same timeline except that no immunizations were administered. All mice were necropsied 24 h after the end of the HDM challenge. CuO NP-exposed healthy mice showed a significant decrease in TH1 and TH2 cells, and an elevation in T-bet+ Treg cells, even 40 days after the last exposure to CuO NPs. Similarly, the CuO NP-exposed HDM asthma model demonstrated decreased TH2 responses and increased T-bet+ Treg cells. Conversely, CuO NP inhalation exposure to AIT-treated asthmatic mice resulted in an increase in TH2 cells. In conclusion, immunomodulatory effects of inhalation exposure to CuO NPs are dependent on immune conditions prior to exposure.


Subject(s)
Asthma , Nanoparticles , Female , Mice , Animals , Copper , Inhalation Exposure , Asthma/chemically induced , Asthma/therapy , Pyroglyphidae , Immunity , Oxides
2.
J Occup Environ Hyg ; 20(9): 390-400, 2023 09.
Article in English | MEDLINE | ID: mdl-37339509

ABSTRACT

Despite efforts to apply administrative and engineering controls to minimize worker exposure to aerosols, filtering facepiece respirators (FFRs) continue to be an important form of personal protective equipment in hard-to-control settings such as healthcare, agriculture, and construction. Optimizing the performance of FFRs can be advanced with the use of mathematical models that incorporate the forces that act on particles during filtration as well as those filter characteristics that influence filter pressure drop. However, a thorough investigation of these forces and characteristics using measurements of currently available FFRs has not been undertaken. Filter characteristics such as fiber diameter and filter depth were measured from samples taken from six currently-available N95 FFRs from three manufacturers. A filtration model was developed that included diffusion, inertial and electrostatic forces to estimate the filtration of an aerosol with a Boltzmann charge distribution. The diameter of the filter fibers was modeled as either a single "effective" diameter or as a lognormal distribution of diameters. Both modeling schemes produced an efficiency curve that simulated efficiency measurements made over a range of particle diameters (0.01 - 0.3 µm) with the use of a scanning mobility particle sizer in the region where efficiency is at a minimum. However, the method using a distribution of fiber diameters produced a better fit for particles > 0.1 µm. The coefficients associated with a simple form of the diffusion equation constituting a power law incorporating the Peclet number were adjusted to enhance model accuracy. Likewise, the fiber charge of the electret fibers was also adjusted to maximize model fit but remained within levels reported by others. A filter pressure drop model was also developed. Results demonstrated the need for a pressure drop model applicable to N95s relative to existing models developed with the use of fibers with larger diameters than those used in current N95 FFRs. A set of N95 FFR characteristics are provided that can be used to develop models of typical N95 FFR filter performance and pressure drop in future studies.


Subject(s)
Air Pollutants, Occupational , Respiratory Protective Devices , United States , N95 Respirators , Air Pollutants, Occupational/analysis , National Institute for Occupational Safety and Health, U.S. , Particle Size , Equipment Design , Inhalation Exposure/prevention & control , Inhalation Exposure/analysis , Filtration , Aerosols/analysis
3.
J Appl Polym Sci ; 140(5): e53406, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-37034442

ABSTRACT

During the global spread of COVID-19, high demand and limited availability of melt-blown filtration material led to a manufacturing backlog of N95 Filtering Facepiece Respirators (FFRs). This shortfall prompted the search for alternative filter materials that could be quickly mass produced while meeting N95 FFR filtration and breathability performance standards. Here, an unsupported, nonwoven layer of uncharged polystyrene (PS) microfibers was produced via electrospinning that achieves N95 performance standards based on physical parameters (e.g., filter thickness) alone. PS microfibers 3-6 µm in diameter and deposited in an ~5 mm thick filter layer are favorable for use in FFRs, achieving high filtration efficiencies (≥97.5%) and low pressure drops (≤15 mm H2O). The PS microfiber filter demonstrates durability upon disinfection with hydroxyl radicals (•OH), maintaining high filtration efficiencies and low pressure drops over six rounds of disinfection. Additionally, the PS microfibers exhibit antibacterial activity (1-log removal of E. coli) and can be modified readily through integration of silver nanoparticles (AgNPs) during electrospinning to enhance their activity (≥3-log removal at 25 wt% AgNP integration). Because of their tunable performance, potential reusability with disinfection, and antimicrobial properties, these electrospun PS microfibers may represent a suitable, alternative filter material for use in N95 FFRs.

4.
Environ Sci Atmos ; 3(1): 238-246, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36743127

ABSTRACT

Various metals have toxic effects by the inhalation route, and electric arc furnace (EAF) steel slag is known to contain metals with a potential for toxicity to humans. In some states, EAF slag is applied to unpaved (gravel) roads as a low-cost supplement to limestone and other crushed stone, where it may be a public health concern for the local population. This study compared the mass of selected metals in the PM10 size fraction of fugitive dust from roads where slag was applied to metals in fugitive dust where slag was not applied. Manganese, designated by the EPA as a hazardous air pollutant (HAP) and one of the primary metals of concern in the slag, was 1.3 times more concentrated in the PM10 fraction from the slag-covered roads as compared to the PM10 fraction from the non-slag-covered roads, but that increase was not significant (p = 0.26). Other metals detected in the airborne dust from both slag-covered and non-slag-covered roads that are also designated as HAPs are antimony, arsenic, chromium, cobalt, lead, nickel, and selenium. In addition, hourly sampling of PM10 and metals in the PM10 fraction was conducted at one of the sample locations where slag had been applied to the road. Manganese mass in the PM10 was positively correlated (Spearman r = 0.86) with the particulate mass in the PM10. Wind direction and the interaction of traffic and wind direction were found to be statistically significant factors affecting manganese concentrations in the fugitive emissions from the road to which EAF slag had been applied. This research demonstrated that application of steel slag can result in elevated levels of manganese in the airborne dust generated by vehicular traffic on the unpaved roadway.

5.
J Occup Environ Hyg ; 19(12): 706-729, 2022 12.
Article in English | MEDLINE | ID: mdl-36197433

ABSTRACT

Direct reading instruments (DRIs) for aerosols have been used in industrial hygiene practice for many years, but their potential has not been fully realized by many occupational health and safety professionals. Although some DRIs quantify other metrics, this article will primarily focus on DRIs that measure aerosol number, size, or mass. This review addresses three applications of aerosol DRIs that occupational health and safety professionals can use to discern, characterize, and document exposure conditions and resolve aerosol-related problems in the workplace. The most common application of aerosol DRIs is the evaluation of engineering controls. Examples are provided for many types of workplaces and situations including construction, agriculture, mining, conventional manufacturing, advanced manufacturing (nanoparticle technology and additive manufacturing), and non-industrial sites. Aerosol DRIs can help identify the effectiveness of existing controls and, as needed, develop new strategies to reduce potential aerosol exposures. Aerosol concentration mapping (ACM) using DRI data can focus attention on emission sources in the workplace spatially illustrate the effectiveness of controls and constructively convey concerns to management and workers. Examples and good practices of ACM are included. Video Exposure Monitoring (VEM) is another useful technique in which video photography is synced with the concentration output of an aerosol DRI. This combination allows the occupational health and safety professional to see what tasks, environmental situations, and/or worker actions contribute to aerosol concentration and potential exposure. VEM can help identify factors responsible for temporal variations in concentration. VEM can assist with training, engage workers, convince managers about necessary remedial actions, and provide for continuous improvement of the workplace environment. Although using DRIs for control evaluation, ACM and VEM can be time-consuming, the resulting information can provide useful data to prompt needed action by employers and employees. Other barriers to adoption include privacy and security issues in some worksites. This review seeks to provide information so occupational health and safety professionals can better understand and effectively use these powerful applications of aerosol DRIs.


Subject(s)
Air Pollutants, Occupational , Nanoparticles , Occupational Exposure , Occupational Health , Humans , Occupational Exposure/prevention & control , Occupational Exposure/analysis , Workplace , Aerosols/analysis , Environmental Monitoring/methods , Air Pollutants, Occupational/analysis
6.
J Occup Environ Hyg ; 19(12): 696-705, 2022 12.
Article in English | MEDLINE | ID: mdl-36197119

ABSTRACT

With advances in technology, there are an increasing number of direct-reading instruments available to occupational health and safety professionals to evaluate occupational aerosol exposures. Despite the wide array of direct-reading instruments available to professionals, the adoption of direct-reading technology to monitor workplace exposures has been limited, partly due to a lack of knowledge on how the instruments operate, how to select an appropriate instrument, and challenges in data analysis techniques. This paper presents a review of direct-reading aerosol instruments available to occupational health and safety professionals, describes the principles of operation, guides instrument selection based on the workplace and exposure, and discusses data analysis techniques to overcome these barriers to adoption. This paper does not cover all direct-reading instruments for aerosols but only those that an occupational health and safety professional could use in a workplace to evaluate exposures. Therefore, this paper focuses on instruments that have the most potential for workplace use due to their robustness, past workplace use, and price with regard to return on investment. The instruments covered in this paper include those that measure aerosol number concentration, mass concentration, and aerosol size distributions.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Occupational Health , Humans , Air Pollutants, Occupational/analysis , Particle Size , Environmental Monitoring/methods , Reading , Occupational Exposure/prevention & control , Occupational Exposure/analysis , Aerosols/analysis
7.
Antibiotics (Basel) ; 11(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35884228

ABSTRACT

Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.

8.
Part Fibre Toxicol ; 19(1): 40, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35698146

ABSTRACT

BACKGROUND: It has been shown that copper oxide nanoparticles (CuO NPs) induce pulmonary toxicity after acute or sub-acute inhalation exposures. However, little is known about the biodistribution and elimination kinetics of inhaled CuO NPs from the respiratory tract. The purposes of this study were to observe the kinetics of pulmonary inflammation during and after CuO NP sub-acute inhalation exposure and to investigate copper (Cu) biodistribution and clearance rate from the exposure site and homeostasis of selected trace elements in secondary organs of BALB/c mice. RESULTS: Sub-acute inhalation exposure to CuO NPs led to pulmonary inflammation represented by increases in lactate dehydrogenase, total cell counts, neutrophils, macrophages, inflammatory cytokines, iron levels in bronchoalveolar lavage (BAL) fluid, and lung weight changes. Dosimetry analysis in lung tissues and BAL fluid showed Cu concentration increased steadily during exposure and gradually declined after exposure. Cu elimination from the lung showed first-order kinetics with a half-life of 6.5 days. Total Cu levels were significantly increased in whole blood and heart indicating that inhaled Cu could be translocated into the bloodstream and heart tissue, and potentially have adverse effects on the kidneys and spleen as there were significant changes in the weights of these organs; increase in the kidneys and decrease in the spleen. Furthermore, concentrations of selenium in kidneys and iron in spleen were decreased, pointing to disruption of trace element homeostasis. CONCLUSIONS: Sub-acute inhalation exposure of CuO NPs induced pulmonary inflammation, which was correlated to Cu concentrations in the lungs and started to resolve once exposure ended. Dosimetry analysis showed that Cu in the lungs was translocated into the bloodstream and heart tissue. Secondary organs affected by CuO NPs exposure were kidneys and spleen as they showed the disruption of trace element homeostasis and organ weight changes.


Subject(s)
Metal Nanoparticles , Nanoparticles , Pneumonia , Trace Elements , Animals , Copper/toxicity , Disease Models, Animal , Inhalation Exposure/adverse effects , Iron , Metal Nanoparticles/toxicity , Mice , Mice, Inbred BALB C , Nanoparticles/toxicity , Oxides , Tissue Distribution
9.
J Occup Environ Hyg ; 18(12): 579-589, 2021 12.
Article in English | MEDLINE | ID: mdl-34612175

ABSTRACT

The inhalable aerosol sampling criterion has been developed to characterize the efficiency of particles entering the nose and/or mouth. However, pesticides can exist in the air in both vapor and particulate phases, which complicates exposure assessments. The American Conference of Governmental Industrial Hygienists (ACGIH) has established an IFV (inhalable fraction and vapor) endnote for chemicals such as many pesticides that need to be evaluated for both their inhalable fraction and vapor concentrations to fully characterize worker exposures. The purpose of this study was to evaluate the particle-phase collection efficiency of a commonly-used pesticide sampler, the OSHA Versatile Sampler (OVS) as well as a recently developed sampler, the IFV Pro. The OVS was not designed as an inhalable aerosol sampler, whereas the IFV Pro contains a sampling head scaled to that of the Institute of Medicine (IOM) sampler, which is known to closely follow the inhalable sampling criterion. Laboratory experiments involving a vertical-flow, low-velocity scheme, and finely graded test dusts with known median aerodynamic diameter were used to determine sampler collection efficiencies. The collection efficiency of the OVS was evaluated as recommended by the manufacturer and after two modifications made to potentially improve its collection efficiency. The OVS was found to substantially under-sample relative to the inhalable criterion, and the two modifications did not provide substantial improvements to the original configuration. Conversely, the collection efficiency of the IFV Pro was found to compare closely to that of the IOM, although collecting 9% more mass. When applied side-by-side with the OVS sampler in a chamber into which ethylene glycol was sprayed as a proxy for a pesticide, the IFV Pro collected an average of 1.9-fold more mass than the OVS for the same flow rate and sample time.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Pesticides , Aerosols/analysis , Air Pollutants, Occupational/analysis , Environmental Monitoring , Inhalation Exposure/analysis , Occupational Exposure/analysis , Particle Size , United States , United States Occupational Safety and Health Administration
10.
J Occup Environ Hyg ; 18(6): 265-275, 2021 06.
Article in English | MEDLINE | ID: mdl-33989113

ABSTRACT

The COVID-19 pandemic has caused a high demand for respiratory protection among health care workers in hospitals, especially surgical N95 filtering facepiece respirators (FFRs). To aid in alleviating that demand, a survey of commercially available filter media was conducted to determine whether any could serve as a substitute for an N95 FFR while held in a 3D-printed mask (Stopgap Surgical Face Mask from the NIH 3D Print Exchange). Fourteen filter media types and eight combinations were evaluated for filtration efficiency, breathing resistance (pressure drop), and liquid penetration. Additional testing was conducted to evaluate two filter media disinfection methods in the event that the filters were reused in a hospital setting. Efficiency testing was conducted in accordance with the procedures established for approving an N95 FFR. One apparatus used a filter-holding device and another apparatus employed a manikin head to which the 3D-printed mask could be sealed. The filter media and combinations exhibited collection efficiencies varied between 3.9% and 98.8% when tested with a face velocity comparable to that of a standard N95 FFR at the 85 L min-1 used in the approval procedure. Breathing resistance varied between 10.8 to >637 Pa (1.1 to > 65 mm H2O). When applied to the 3D-printed mask efficiency decreased by an average of 13% and breathing resistance increased 4-fold as a result of the smaller surface area of the filter media when held in that mask compared to that of an N95 FFR. Disinfection by dry heat, even after 25 cycles, did not significantly affect filter efficiency and reduced viral infectivity by > 99.9%. However, 10 cycles of 59% vaporized H2O2 significantly (p < 0.001) reduced filter efficiency of the media tested. Several commercially available filter media were found to be potential replacements for the media used to construct the typical cup-like N95 FFR. However, their use in the 3D-printed mask demonstrated reduced efficiency and increased breathing resistance at 85 L min-1.


Subject(s)
COVID-19/prevention & control , Disinfection/standards , Equipment Contamination/prevention & control , Materials Testing/standards , N95 Respirators/virology , Occupational Exposure/prevention & control , Pandemics/prevention & control , Air Pollutants, Occupational/analysis , Equipment Failure Analysis/statistics & numerical data , Guidelines as Topic , Humans , Inhalation Exposure/analysis , SARS-CoV-2
11.
Aerosol Sci Technol ; 54(10): 1169-1182, 2020.
Article in English | MEDLINE | ID: mdl-33100458

ABSTRACT

Hygroscopic growth models are currently of interest as aids for targeting the deposition of inhaled drug particles in preferred areas of the lung that will maximize their pharmaceutical effect. Mathematical models derived to estimate hygroscopic growth over time have been previously developed but have not been thoroughly validated. For this study, model validation involved a comparison of modeled values to measured values when the growing droplet had reached equilibrium. A second validation process utilized a novel system to measure the growth of a droplet on a microscope coverslip relative to modeled values when the droplet is undergoing the initial rapid growth phase. Various methods currently used to estimate the water activity of the growing droplet, which influences the droplet growth rate, were also compared. Results indicated that a form of the hygroscopic growth model that utilizes coupled-differential equations to estimate droplet diameter and temperature over time was valid throughout droplet growth until it reached its equilibrium size. Accuracy was enhanced with the use of a polynomial expression to estimate water activity relative to the use of a simplified estimate of water activity based on Raoult's Law. Model accuracy was also improved when constraining the film of salt solution surrounding the dissolving salt core at saturation.

12.
NanoImpact ; 172020 Jan.
Article in English | MEDLINE | ID: mdl-32968699

ABSTRACT

Cellulose nanofibers (CNFs) are an emerging engineered nanomaterial that are utilized in a variety of applications, including as a replacement for urea-formaldehyde, and other adhesives, as the binding agent in manufactured fiber and particle boards. To ensure the health and well-being of those producing, installing, or otherwise using cellulose nanofiber boards (CNFBs) it is imperative that the particulate matter (PM) produced during CNFB manipulation be evaluated for toxicity. We developed and internally verified a generation system to examine the PM produced by sanding CNFB using aluminum oxide sandpaper. With 80-grit sandpaper our system produced a low dispersity aerosol, as determined by a scanning mobility particle sizer and an optical particle counter, with a geometric mean of 28 nm (GSD = 1.60). ICP-MS evaluation showed little difference in metal concentrations between CNFB PM and nonsanded CNFB stock. We then used the system to simultaneously generate and expose both male and female C57BL/6J mice acutely for 4 hours at a concentration of 7.9 mg/m3. Sham-exposed controls were treated similarly but without sanding the CNFB. Analysis of bronchoalveolar lavage (BAL) fluid biomarkers showed no signs of inflammatory response at either 4- or 24-hours post exposure. Further, BAL cell viability, number of total cells, and pulmonary cellular recruitment were not significantly changed between the sham-exposed controls and CNFB-exposed mice. Histology further confirmed no pulmonary toxicity as a result of CNFB PM inhalation. We conclude that inhalation of a high concentration of the PM from manipulation of a CNFB did not produce acute toxic responses within 24 hours of exposure.

13.
NanoImpact ; 182020 Apr.
Article in English | MEDLINE | ID: mdl-32968700

ABSTRACT

Characterizations and in vitro toxicity screening were performed on metal oxide engineered nanomaterials (ENMs) independently comprising ZnO, CuO, CeO2, Fe2O3, WO3, V2O5, TiO2, Al2O3 and MgO. Nanomaterials that exhibited the highest toxicity responses in the in vitro screening assays (ZnO, CuO, and V2O5) and the lesser explored material WO3 were tested for acute pulmonary toxicity in vivo. Female and male mice (C57Bl/6J) were exposed to aerosolized metal oxide ENMs in a nose-only exposure system and toxicity outcomes (biomarkers of cytotoxicity, immunotoxicity, inflammation, and lung histopathology) at 4 and 24 h after the start of exposure were assessed. The studies were performed as part of the NIEHS Nanomaterials Health Implications Research consortium with the purpose of investigating the effects of ENMs on various biological systems. ENMs were supplied by the Engineered Nanomaterials Resource and Coordination Core. Among the ENMs studied, the highest toxicity was observed for CuO and ZnO NPs in both in vitro and in vivo acute models. Compared to sham-exposed controls, there was a significant increase in bronchoalveolar lavage neutrophils and proinflammatory cytokines and a loss of macrophage viability at both 4 h and 24 h for ZnO and CuO but not seen for V2O5 or WO3. These effects were observed in both female and male mice. The cell viability performed after in vitro exposure to ENMs and assessment of lung inflammation after acute inhalation exposure in vivo were shown to be sensitive endpoints to predict ENM acute toxicity.

14.
J Aerosol Sci ; 146: 105581, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32346183

ABSTRACT

This study numerically investigates the effect of hygroscopicity on transport and deposition of particles in severe asthmatic lungs with distinct airway structures. The study human subjects were selected from two imaging-based severe asthmatic clusters with one characterized by non-constricted airways and the other by constricted airways in the lower left lobe (LLL). We compared the deposition fractions of sodium chloride (NaCl) particles with a range of aerodynamic diameters (1-8 µm) in cluster archetypes under conditions with and without hygroscopic growth. The temperature and water vapor distributions in the airways were simulated with an airway wall boundary condition that accounts for variable temperature and water vapor evaporation at the interface between the lumen and the airway surface liquid layer. On average, the deposition fraction increased by about 6% due to hygroscopic particle growth in the cluster subjects with constricted airways, while it increased by only about 0.5% in those with non-constricted airways. The effect of particle growth was most significant for particles with an initial diameter of 2 µm in the cluster subjects with constricted airways. The effect diminished with increasing particle size, especially for particles with an initial diameter larger than 4 µm. This suggests the necessity to differentiate asthmatic subjects by cluster in engineering the aerosol size for tailored treatment. Specifically, the treatment of severe asthmatic subjects who have constricted airways with inhalation aerosols may need submicron-sized hygroscopic particles to compensate for particle growth, if one targets for delivering to the peripheral region. These results could potentially inform the choice of particle size for inhalational drug delivery in a cluster-specific manner.

15.
Ann Work Expo Health ; 64(5): 503-513, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32219300

ABSTRACT

OBJECTIVES: Daily driving of diesel-powered tractors has been linked to increased lung cancer risk in farmers, yet few studies have quantified exposure levels to diesel exhaust during tractor driving or during other farm activities. We expanded an earlier task-based descriptive investigation of factors associated with real-time exposure levels to black carbon (BC, a surrogate of diesel exhaust) in Iowa farmers by increasing the sample size, collecting repeated measurements, and applying statistical models adapted to continuous measurements. METHODS: The expanded study added 43 days of sampling, for a total of 63 sample days conducted in 2015 and 2016 on 31 Iowa farmers. Real-time, continuous monitoring (30-s intervals) of personal BC concentrations was performed using a MicroAeth AE51 microaethelometer affixed with a micro-cyclone. A field researcher recorded information on tasks, fuel type, farmer location, and proximity to burning biomass. We evaluated the influence of these variables on log-transformed BC concentrations using a linear mixed-effect model with random effects for farmer and day and a first-order autoregressive structure for within-day correlation. RESULTS: Proximity to diesel-powered equipment was observed for 42.5% of the overall sampling time and on 61 of the 63 sample days. Predicted geometric mean BC concentrations were highest during grain bin work, loading, and harvesting, and lower for soil preparation and planting. A 68% increase in BC concentrations was predicted for close proximity to a diesel-powered vehicle, relative to far proximity, while BC concentrations were 44% higher in diesel vehicles with open cabins compared with closed cabins. Task, farmer location, fuel type, and proximity to burning biomass explained 8% of within-day variance in BC concentrations, 2% of between-day variance, and no between-farmer variance. CONCLUSION: Our findings showed that farmers worked frequently near diesel equipment and that BC concentrations varied between tasks and by fuel type, farmer location, and proximity to burning biomass. These results could support the development of exposure models applicable to investigations of health effects in farmers associated with exposure to diesel engine exhaust.


Subject(s)
Occupational Exposure , Vehicle Emissions , Agriculture , Carbon/analysis , Farms , Humans , Models, Statistical
16.
J Occup Environ Hyg ; 16(7): 423-431, 2019 07.
Article in English | MEDLINE | ID: mdl-31013202

ABSTRACT

Several manufacturers are producing disposable dual-use dust masks that are primarily designed to protect against airborne particulate exposures but that also contain a layer of activated carbon to provide protection against organic vapors (OVs) at levels below permissible exposure levels, referred to as "nuisance level" by the FFR manufacturers. Industries identified in the literature as commonly having employees exposed to nuisance-level OVs include beautician salons, dry cleaning operations, and pesticide applications. This study investigated the adsorption capabilities of three different dual-use dust masks that contain both filter media to remove particles and activated carbon to capture OVs. The three dual-use dust masks were tested and compared relative to the 50% breakthrough time for two OVs (acetone and perchloroethylene) and one non-carbon-based contaminant gas (ammonia) often found in agricultural settings at nuisance-level amounts. The dual-use dust masks were exposed to 15 ppm and 50 ppm for all 3 compounds, which represented the range of nuisance-level exposure documented in literature. Most tests were conducted at 21 °C and 50% relative humidity. A relative humidity level of 95% was also created to compare results under that condition. The non-approved dual-use dust masks were ineffective for all vapors and offered less than 10 min of protection before 50% breakthrough occurred. All dual-use dust masks performed poorly when exposed to ammonia, with breakthrough time less than 7 min at 50 ppm and 10 min at 15 ppm. The approved dual-use dust mask had 50% breakthrough times, for example, of 121 min and 233 min for acetone at 15 ppm and 50 ppm, respectively. The less volatile perchloroethylene took over 400 min to achieve 50% breakthrough at 50 ppm. High relative humidity reduced breakthrough times by up to 70%. These results indicate high variability in performance among dual-use dust masks. Performance is also dependent on gas/vapor volatility and levels of water vapor. However, one model tested, the 3M model 8514, did show promise as an acceptable method for greatly reducing nuisance-level OV exposures.


Subject(s)
Adsorption , Air Pollutants, Occupational , Charcoal , Respiratory Protective Devices/standards , Acetone/chemistry , Ammonia/chemistry , Filtration , Humidity , Masks , Occupational Exposure/prevention & control , Tetrachloroethylene/chemistry
17.
J Occup Environ Hyg ; 15(4): 293-304, 2018 04.
Article in English | MEDLINE | ID: mdl-29286870

ABSTRACT

Diesel exhaust has been associated with adverse human health effects. Farmers are often exposed to diesel exhaust; however, their diesel exposure has not been well characterized. In this descriptive study, we measured black carbon concentrations as a proxy for diesel exhaust exposure in 16 farmers over 20 sampling days during harvest in southeast Iowa. Farmers wore a personal aethalometer which measured real-time black carbon levels throughout the working day, and their activities were recorded by a field researcher. Black carbon concentrations were characterized for each farmer, and by activity, vehicle fuel type, and microenvironment. Overall, 574 discrete tasks were monitored with a median task duration of 5.5 min. Of these tasks, 39% involved the presence of a diesel vehicle. Farmers' daily black carbon geometric mean exposures ranged from 0.1-2.3 µg/m3, with a median daily geometric mean of 0.3 µg/m3. The highest black carbon concentrations were measured on farmers who used or worked near diesel vehicles (geometric mean ranged from 0.5 µg/m3 while harvesting to 4.9 µg/m3 during animal work). Higher geometric means were found for near vs. far proximity to diesel-fueled vehicles and equipment (2.9 vs. 0.3 µg/m3). Indoor, bystander proximity to diesel-operated vehicles resulted in the highest geometric mean black carbon concentrations (18 µg/m3). Use of vehicles with open cabs had higher mean black carbon concentrations than closed cabs (2.1-3.2 vs. 0.4-0.9 µg/m3). In summary, our study provided evidence that farmers were frequently exposed to black carbon associated with diesel-related activities at levels above urban ambient concentrations in their daily work during harvest.


Subject(s)
Air Pollutants, Occupational/analysis , Carbon/analysis , Farmers , Occupational Exposure/analysis , Vehicle Emissions , Aged , Air Pollution, Indoor/analysis , Humans , Iowa , Male , Middle Aged
18.
Sci Total Environ ; 609: 1475-1482, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28800690

ABSTRACT

Field and laboratory studies were conducted to evaluate the impact of proppant sand mining and processing activities on community particulate matter (PM) concentrations. In field studies outside 17 homes within 800m of sand mining activities (mining, processing, and transport), respirable (PM4) crystalline silica concentrations were low (<0.4µg/m3) with crystalline silica detected on 7 samples (2% to 4% of mass). In long-term monitoring at 6 homes within 800m of sand mining activities, the highest daily mean PM concentrations observed were 14.5µg/m3 for PM2.5 and 37.3µg/m3 for PM10, although infrequent (<3% of time), short-term elevated PM concentrations occurred when wind blew over the facility. In laboratory studies, aerosolized sand was shown to produce respirable-sized particles, containing 6% to 19% crystalline silica. Dispersion modeling of a mine and processing facility indicated that PM10 can exceed standards short distances (<40m) beyond property lines. Lastly, fence-line PM and crystalline silica concentrations reported to state agencies were substantially below regulatory or guideline values, although several excursions were observed for PM10 when winds blew over the facility. Taken together, community exposures to airborne particulate matter from proppant sand mining activities at sites similar to these appear to be unlikely to cause chronic adverse health conditions.

19.
J Geophys Res Atmos ; 121(9): 5071-5089, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27672535

ABSTRACT

Bioaerosols are well-known immune-active particles that exacerbate respiratory diseases. Human exposures to bioaerosols and their resultant health impacts depend on their ambient concentrations, seasonal and spatial variation, and co-pollutants, which are not yet widely characterized. In this study, chemical and biological tracers of bioaerosols were quantified in respirable particulate matter (PM10) collected at three urban and three background sites in the Midwestern United States across four seasons in 2012. Endotoxins from gram negative bacteria (and a few gram positive bacteria), water-soluble proteins, and tracers for fungal spores (fungal glucans, arabitol and mannitol) were ubiquitous and showed significant seasonal variation and dependence on temperature. Fungal spores were elevated in spring and peaked in summer, following the seasonal growing cycle, while endotoxins peaked in autumn during the row crop harvesting season. Paired comparisons of bioaerosols in urban and background sites revealed significant urban enhancements in PM10, fungal glucans, endotoxins and water-soluble proteins relative to background locations, such that urban populations have a greater outdoor exposure to bioaerosols. These bioaerosols contribute, in part, to the urban excesses in PM10. Higher bioaerosol mass fractions in urban areas relative to background sites indicate that urban areas serve as a source of bioaerosols. Similar urban enhancements in water-soluble calcium and its correlation with bioaerosol tracers point towards wind-blown soil as an important source of bioaerosols in urban areas.

20.
J Occup Environ Hyg ; 13(7): 491-500, 2016 07.
Article in English | MEDLINE | ID: mdl-26861653

ABSTRACT

The objective of this study was to determine the effect of several simulated air environmental conditions on the particle penetration and the breathing resistance of two N95 filtering facepiece respirator (FFR) models. The particle penetration and breathing resistance of the respirators were evaluated in a test system developed to mimic inhalation and exhalation breathing while relative humidity and temperature were modified. Breathing resistance was measured over 120 min using a calibrated pressure transducer under four different temperature and relative humidity conditions without aerosol loading. Particle penetration was evaluated before and after the breathing resistance test at room conditions using a sodium chloride aerosol measured with a scanning mobility particle sizer. Results demonstrated that increasing relative humidity and lowering external temperature caused significant increases in breathing resistance (p < 0.001). However, these same conditions did not influence the penetration or most penetrating particle size of the tested FFRs. The increase in breathing resistance varied by FFR model suggesting that some FFR media are less influenced by high relative humidity.


Subject(s)
Humidity , Particulate Matter , Respiratory Protective Devices/standards , Temperature , Aerosols , Filtration/instrumentation , Filtration/standards , Inhalation , Inhalation Exposure/prevention & control , Particle Size , Sodium Chloride/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...