Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Lancet Planet Health ; 8(1): e5-e17, 2024 01.
Article in English | MEDLINE | ID: mdl-38199723

ABSTRACT

BACKGROUND: Perfluoroalkyl and polyfluoroalkyl substances are classed as endocrine disrupting compounds but continue to be used in many products such as firefighting foams, flame retardants, utensil coatings, and waterproofing of food packaging. Perfluoroalkyl exposure aberrantly modulates lipid, metabolite, and bile acid levels, increasing susceptibility to onset and severity of metabolic diseases, such as diabetes and metabolic dysfunction-associated steatotic liver disease. To date, most studies in humans have focused on perfluoroalkyl-exposure effects in adults. In this study we aimed to show if perfluoroalkyls are present in the human fetal liver and if they have metabolic consequences for the human fetus. METHODS: In this cross-sectional study, human fetal livers from elective termination of pregnancies at the Aberdeen Pregnancy Counselling Service, Aberdeen, UK, were analysed by both targeted (bile acids and perfluoroalkyl substances) and combined targeted and untargeted (lipids and polar metabolites) mass spectrometry based metabolomic analyses, as well as with RNA-Seq. Only fetuses from normally progressing pregnancies (determined at ultrasound scan before termination), terminated for non-medical reasons, from women older than 16 years, fluent in English, and between 11 and 21 weeks of gestation were collected. Women exhibiting considerable emotional distress or whose fetuses had anomalies identified at ultrasound scan were excluded. Stringent bioinformatic and statistical methods such as partial correlation network analysis, linear regression, and pathway analysis were applied to this data to investigate the association of perfluoroalkyl exposure with hepatic metabolic pathways. FINDINGS: Fetuses included in this study were collected between Dec 2, 2004, and Oct 27, 2014. 78 fetuses were included in the study: all 78 fetuses were included in the metabolomics analysis (40 female and 38 male) and 57 fetuses were included in the RNA-Seq analysis (28 female and 29 male). Metabolites associated with perfluoroalkyl were identified in the fetal liver and these varied with gestational age. Conjugated bile acids were markedly positively associated with fetal age. 23 amino acids, fatty acids, and sugar derivatives in fetal livers were inversely associated with perfluoroalkyl exposure, and the bile acid glycolithocholic acid was markedly positively associated with all quantified perfluoroalkyl. Furthermore, 7α-hydroxy-4-cholesten-3-one, a marker of bile acid synthesis rate, was strongly positively associated with perfluoroalkyl levels and was detectable as early as gestational week 12. INTERPRETATION: Our study shows direct evidence for the in utero effects of perfluoroalkyl exposure on specific key hepatic products. Our results provide evidence that perfluoroalkyl exposure, with potential future consequences, manifests in the human fetus as early as the first trimester of gestation. Furthermore, the profiles of metabolic changes resemble those observed in perinatal perfluoroalkyl exposures. Such exposures are already linked with susceptibility, initiation, progression, and exacerbation of a wide range of metabolic diseases. FUNDING: UK Medical Research Council, Horizon Europe Program of the European Union, Seventh Framework Programme of the European Union, NHS Grampian Endowments grants, European Partnership for the Assessment of Risks from Chemicals, Swedish Research Council, Formas, Novo Nordisk Foundation, and the Academy of Finland.


Subject(s)
Fluorocarbons , Metabolic Diseases , Adult , Pregnancy , Humans , Female , Male , Cross-Sectional Studies , Metabolome , Scotland , Bile Acids and Salts , Fluorocarbons/adverse effects
2.
PLoS One ; 18(9): e0290846, 2023.
Article in English | MEDLINE | ID: mdl-37656709

ABSTRACT

Sertoli cells support the development of sperm and the function of various somatic cells in the interstitium between the tubules. Sertoli cells regulate the function of the testicular vasculature and the development and function of the Leydig cells that produce testosterone for fertility and virility. However, the Sertoli cell-derived factors that regulate these cells are largely unknown. To define potential mechanisms by which Sertoli cells could support testicular somatic cell function, we aimed to identify Sertoli cell-enriched proteins in the testicular interstitial fluid (TIF) between the tubules. We previously resolved the proteome of TIF in mice and humans and have shown it to be a rich source of seminiferous tubule-derived proteins. In the current study, we designed bioinformatic strategies to interrogate relevant proteomic and genomic datasets to identify Sertoli cell-enriched proteins in mouse and human TIF. We analysed proteins in mouse TIF that were significantly reduced after one week of acute Sertoli cell ablation in vivo and validated which of these are likely to arise primarily from Sertoli cells based on relevant mouse testis RNASeq datasets. We used a different, but complementary, approach to identify Sertoli cell-enriched proteins in human TIF, taking advantage of high-quality human testis genomic, proteomic and immunohistochemical datasets. We identified a total of 47 and 40 Sertoli cell-enriched proteins in mouse and human TIF, respectively, including 15 proteins that are conserved in both species. Proteins with potential roles in angiogenesis, the regulation of Leydig cells or steroidogenesis, and immune cell regulation were identified. The data suggests that some of these proteins are secreted, but that Sertoli cells also deposit specific proteins into TIF via the release of extracellular vesicles. In conclusion, we have identified novel Sertoli cell-enriched proteins in TIF that are candidates for regulating somatic cell-cell communication and testis function.


Subject(s)
Sertoli Cells , Testis , Humans , Male , Animals , Mice , Extracellular Fluid , Proteomics , Semen
3.
Sci Rep ; 12(1): 1553, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35091579

ABSTRACT

Globally increasing levels of artificial light at night (ALAN) are associated with shifting rhythms of behaviour in many wild species. However, it is unclear whether changes in behavioural timing are paralleled by consistent shifts in the molecular clock and its associated physiological pathways. Inconsistent shifts between behavioural and molecular rhythms, and between different tissues and physiological systems, disrupt the circadian system, which coordinates all major body functions. We therefore compared behavioural, transcriptional and metabolomic responses of captive great tits (Parus major) to three ALAN intensities or to dark nights, recording activity and sampling brain, liver, spleen and blood at mid-day and midnight. ALAN advanced wake-up time, and this shift was paralleled by advanced expression of the clock gene BMAL1 in all tissues, suggesting close links between behaviour and clock gene expression across tissues. However, further analysis of gene expression and metabolites revealed that clock shifts were inconsistent across physiological systems. Untargeted metabolomic profiling showed that only 9.7% of the 755 analysed metabolites followed the behavioural shift. This high level of desynchronization indicates that ALAN disrupted the circadian system on a deep, easily overlooked level. Thus, circadian disruption could be a key mediator of health impacts of ALAN on wild animals.


Subject(s)
Light Pollution
4.
FASEB J ; 35(3): e21397, 2021 03.
Article in English | MEDLINE | ID: mdl-33565176

ABSTRACT

Sperm develop from puberty in the seminiferous tubules, inside the blood-testis barrier to prevent their recognition as "non-self" by the immune system, and it is widely assumed that human sperm-specific proteins cannot access the circulatory or immune systems. Sperm-specific proteins aberrantly expressed in cancer, known as cancer-testis antigens (CTAs), are often pursued as cancer biomarkers and therapeutic targets based on the assumption they are neoantigens absent from the circulation in healthy men. Here, we identify a wide range of germ cell-derived and sperm-specific proteins, including multiple CTAs, that are selectively deposited by the Sertoli cells of the adult mouse and human seminiferous tubules into testicular interstitial fluid (TIF) that is "outside" the blood-testis barrier. From TIF, the proteins can access the circulatory- and immune systems. Disruption of spermatogenesis decreases the abundance of these proteins in mouse TIF, and a sperm-specific CTA is significantly decreased in TIF from infertile men, suggesting that exposure of certain CTAs to the immune system could depend on fertility status. The results provide a rationale for the development of blood-based tests useful in the management of male infertility and indicate CTA candidates for cancer immunotherapy and biomarker development that could show sex-specific and male-fertility-related responses.


Subject(s)
Antigens, Neoplasm/analysis , Proteins/analysis , Seminiferous Tubules/metabolism , Spermatozoa/chemistry , Animals , Blood-Testis Barrier , Extracellular Fluid/chemistry , Humans , Immunotherapy , Infertility, Male/metabolism , Male , Mice , Neoplasms/therapy , Proteome , Sertoli Cells/physiology , Spermatogenesis , Testis/metabolism
5.
FASEB J ; 34(8): 10373-10386, 2020 08.
Article in English | MEDLINE | ID: mdl-32557858

ABSTRACT

Male development, fertility, and lifelong health are all androgen-dependent. Approximately 95% of circulating testosterone is synthesized by the testis and the final step in this canonical pathway is controlled by the activity of the hydroxysteroid-dehydrogenase-17-beta-3 (HSD17B3). To determine the role of HSD17B3 in testosterone production and androgenization during male development and function we have characterized a mouse model lacking HSD17B3. The data reveal that developmental masculinization and fertility are normal in mutant males. Ablation of HSD17B3 inhibits hyperstimulation of testosterone production by hCG, although basal testosterone levels are maintained despite the absence of HSD17B3. Reintroduction of HSD17B3 via gene-delivery to Sertoli cells in adulthood partially rescues the adult phenotype, showing that, as in development, different cell-types in the testis are able to work together to produce testosterone. Together, these data show that HS17B3 acts as a rate-limiting-step for the maximum level of testosterone production by the testis but does not control basal testosterone production. Measurement of other enzymes able to convert androstenedione to testosterone identifies HSD17B12 as a candidate enzyme capable of driving basal testosterone production in the testis. Together, these findings expand our understanding of testosterone production in males.


Subject(s)
17-Hydroxysteroid Dehydrogenases/metabolism , Sertoli Cells/metabolism , Testis/metabolism , Testosterone/metabolism , Androgens/metabolism , Animals , Female , Fertility/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
6.
PLoS One ; 14(7): e0219524, 2019.
Article in English | MEDLINE | ID: mdl-31291327

ABSTRACT

OBJECTIVES: The current study aims to identify markers that would reflect the number of Leydig cells present in the testis, to help determine whether labour-intensive methods such as stereology are necessary. We used our well-characterised Sertoli cell ablation model in which we have empirically established the size of the Leydig cell population, to try to identify transcriptional biomarkers indicative of population size. RESULTS: Following characterisation of the Leydig cell population after Sertoli cell ablation in neonatal life or adulthood, we identified Hsd3b1 transcript levels as a potential indicator of Leydig cell number with utility for informing decision-making on whether to engage in time-consuming stereological cell counting analysis.


Subject(s)
Leydig Cells , Multienzyme Complexes/genetics , Progesterone Reductase/genetics , Steroid Isomerases/genetics , Animals , Animals, Newborn , Biomarkers/metabolism , Cell Count/methods , Gene Expression Profiling , Male , Mice , Multienzyme Complexes/metabolism , Progesterone Reductase/metabolism , Steroid Isomerases/metabolism
7.
Placenta ; 78: 10-17, 2019 03.
Article in English | MEDLINE | ID: mdl-30955705

ABSTRACT

INTRODUCTION: The placenta controls nutrient transfer between mother and fetus via membrane transporters. Appropriate transplacental passage of nutrients is essential for fetal growth and development. We investigated whether transporter transcript levels in human placenta-liver pairs from first and early second trimester pregnancies exhibit gestational age- or fetal sex-specific profiles and whether these are dysregulated by maternal smoking. METHODS: In a step-change for the field, paired placenta and fetal livers from 54 electively terminated, normally-progressing pregnancies (7-20 weeks of gestation, Scottish Advanced Fetal Research Study, REC 15/NS/0123) were sexed and cigarette smoking-exposure confirmed. Thirty-six nutrient transporter transcripts were quantified using RT-qPCR. RESULTS: While fetal, liver and placenta weights were not altered by maternal smoking, levels of transporter transcripts changed with fetal age and sex in the placenta and fetal liver and their trajectories were altered if the mother smoked. Placental levels of glucose uptake transporters SLC2A1 and SLC2A3 increased in smoking-exposed fetuses while smoking was associated with altered levels of amino acid and fatty acid transporter genes in both tissues. SLC7A8, which exchanges non-essential amino acids in the fetus for essential amino acids from the placenta, was reduced in smoking-exposed placentas while transcript levels of four hepatic fatty acid uptake transporters were also reduced by smoking. DISCUSSION: This data shows that fetal sex and age and maternal smoking are associated with altered transporter transcript levels. This could influence nutrient transport across the placenta and subsequent uptake by the fetal liver, altering trophic delivery to the growing fetus.


Subject(s)
Fetus/metabolism , Liver/metabolism , Membrane Transport Proteins/genetics , Nutrients/metabolism , Placenta/metabolism , Pregnancy Complications , Smoking , Adult , Case-Control Studies , Female , Gene Expression , Gestational Age , Humans , Membrane Transport Proteins/metabolism , Pregnancy , Pregnancy Complications/genetics , Pregnancy Complications/metabolism , Smoking/adverse effects , Smoking/genetics , Smoking/metabolism , Young Adult
8.
BMC Dev Biol ; 19(1): 8, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30995907

ABSTRACT

BACKGROUND: The interstitium of the mouse testis contains Leydig cells and a small number of steroidogenic cells with adrenal characteristics which may be derived from the fetal adrenal during development or may be a normal subset of the developing fetal Leydig cells. Currently it is not known what regulates development and/or proliferation of this sub-population of steroidogenic cells in the mouse testis. Androgen receptors (AR) are essential for normal testicular function and in this study we have examined the role of the AR in regulating interstitial cell development. RESULTS: Using a mouse model which lacks gonadotropins and AR (hpg.ARKO), stimulation of luteinising hormone receptors in vivo with human chorionic gonadotropin (hCG) caused a marked increase in adrenal cell transcripts/protein in a group of testicular interstitial cells. hCG also induced testicular transcripts associated with basic steroidogenic function in these mice but had no effect on adult Leydig cell-specific transcript levels. In hpg mice with functional AR, treatment with hCG induced Leydig cell-specific function and had no effect on adrenal transcript levels. Examination of mice with cell-specific AR deletion and knockdown of AR in a mouse Leydig cell line suggests that AR in the Leydig cells are likely to regulate these effects. CONCLUSIONS: This study shows that in the mouse the androgen receptor is required both to prevent development of testicular cells with adrenal characteristics and to ensure development of an adult Leydig cell phenotype.


Subject(s)
Chorionic Gonadotropin/metabolism , Embryonic Development/physiology , Leydig Cells/cytology , Luteinizing Hormone/metabolism , Receptors, Androgen/biosynthesis , Animals , Cell Count , Cell Line, Tumor , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Leydig Cells/metabolism , Male , Mice , Models, Animal , Phenotype , Receptors, Androgen/genetics
9.
PLoS Biol ; 17(2): e3000002, 2019 02.
Article in English | MEDLINE | ID: mdl-30763313

ABSTRACT

Masculinization of the external genitalia in humans is dependent on formation of 5α-dihydrotestosterone (DHT) through both the canonical androgenic pathway and an alternative (backdoor) pathway. The fetal testes are essential for canonical androgen production, but little is known about the synthesis of backdoor androgens, despite their known critical role in masculinization. In this study, we have measured plasma and tissue levels of endogenous steroids in second trimester human fetuses using multidimensional and high-resolution mass spectrometry. Results show that androsterone is the principal backdoor androgen in the male fetal circulation and that DHT is undetectable (<1 ng/mL), while in female fetuses, there are significantly lower levels of androsterone and testosterone. In the male, intermediates in the backdoor pathway are found primarily in the placenta and fetal liver, with significant androsterone levels also in the fetal adrenal. Backdoor intermediates, including androsterone, are only present at very low levels in the fetal testes. This is consistent with transcript levels of enzymes involved in the alternate pathway (steroid 5α-reductase type 1 [SRD5A1], aldo-keto reductase type 1C2 [AKR1C2], aldo-keto reductase type 1C4 [AKR1C4], cytochrome P450 17A1 [CYP17A1]), as measured by quantitative PCR (qPCR). These data identify androsterone as the predominant backdoor androgen in the human fetus and show that circulating levels are sex dependent, but also that there is little de novo synthesis in the testis. Instead, the data indicate that placental progesterone acts as substrate for synthesis of backdoor androgens, which occurs across several tissues. Masculinization of the human fetus depends, therefore, on testosterone and androsterone synthesis by both the fetal testes and nongonadal tissues, leading to DHT formation at the genital tubercle. Our findings also provide a solid basis to explain why placental insufficiency is associated with disorders of sex development in humans.


Subject(s)
Androgens/biosynthesis , Fetus/physiology , Masculinity , Dihydrotestosterone/blood , Dihydrotestosterone/metabolism , Female , Humans , Male , Metabolic Networks and Pathways , Ovary/metabolism , Pregnancy , Pregnancy Trimester, Second/blood , RNA, Messenger/genetics , RNA, Messenger/metabolism , Testis/metabolism
10.
Environ Int ; 124: 98-108, 2019 03.
Article in English | MEDLINE | ID: mdl-30641261

ABSTRACT

BACKGROUND: The increased incidence of diseases, including metabolic syndrome and infertility, may be related to exposure to the mixture of chemicals, which are ubiquitous in the modern environment (environmental chemicals, ECs). Xeno-detoxification occurs within the liver which is also the source of many plasma proteins and growth factors and plays an important role in the regulation of homeostasis. OBJECTIVES: The objective of this study was to investigate the effects of ECs on aspects of liver function, in a well characterized ovine model of exposure to a real-life EC mixture. METHODS: Four groups of sheep (n = 10-12/sex/treatment) were maintained long-term on control or sewage sludge-fertilized pastures: from conception to culling at 19 months of age in females and from conception to 7 months of age and thereafter in control plots until culling at 19 months of age in males. Environmental chemicals were measured in sheep livers and RNA and protein extracts were assessed for exposure markers. Liver proteins were resolved using 2D differential in-gel electrophoresis and differentially expressed protein spots were identified by liquid chromatography/tandem mass spectroscopy. RESULTS: Higher levels of polycyclic aromatic hydrocarbons (PAHs) and lower levels of polychlorinated biphenyls (PCBs) in the livers of control males compared to control females indicated sexually dimorphic EC body burdens. Increased levels of the PAHs Benzo[a]anthracene and chrysene and reduced levels of PCB 153 and PCB 180 were observed in the livers of continuously exposed females. EC exposure affected xenobiotic and detoxification responses and the liver proteome in both sexes and included major plasma-secreted and blood proteins, and metabolic enzymes whose pathway analysis predicted dysregulation of cancer-related pathways and altered lipid dynamics. The latter were confirmed by a reduction in total lipids in female livers and up-regulation of cancer-related transcript markers in male livers respectively by sewage sludge exposure. CONCLUSIONS: Our results demonstrate that chronic exposure to ECs causes major physiological changes in the liver, likely to affect multiple systems in the body and which may predispose individuals to increased disease risks.


Subject(s)
Biomarkers, Tumor/biosynthesis , Environmental Exposure , Environmental Pollutants/toxicity , Fertilizers , Liver/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Sewage , Animals , Female , Lipid Metabolism , Liver/chemistry , Male , Polychlorinated Biphenyls/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Sewage/chemistry , Sex Factors , Sheep
11.
BMC Med ; 16(1): 194, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30348172

ABSTRACT

BACKGROUND: Maternal lifestyle factors, including smoking and increased body weight, increase risks of adult diseases such as metabolic syndrome and infertility. The fetal thyroid gland is essential for the control of fetal metabolic rate, cardiac output, and brain development. Altered fetal thyroid function may contribute to increased disease onset later in life. Here, we investigated the impact of maternal smoking and high maternal weight on human fetal thyroid function during the second trimester. METHODS: Thyroid glands and plasma were collected from fetuses electively terminated in the second trimester (normally progressing pregnancies). Plasma total triiodothyronine (T3) and total thyroxine (T4) were measured by solid-phase extraction-liquid chromatography-tandem mass spectrometry. Fetal plasma thyroid-stimulating hormone (TSH) levels were measured using a multiplex assay for human pituitary hormones. Histology and immunolocalization of thyroid developmental markers were examined in thyroid sections. Transcript levels of developmental, functional, apoptotic, and detoxification markers were measured by real-time PCR. Statistical analyses were performed using multivariate linear regression models with fetal age, sex, and maternal smoking or maternal body mass index (BMI) as covariates. RESULTS: Maternal smoking was associated with significant changes in fetal plasma T4 and TSH levels during the second trimester. Smoke-exposed thyroids had reduced thyroid GATA6 and NKX2-1 transcript levels and altered developmental trajectories for ESR2 and AHR transcript levels. Maternal BMI > 25 was associated with increased fetal thyroid weight, increased plasma TSH levels, and abnormal thyroid histology in female fetuses. Normal developmental changes in AHR and ESR1 transcript expression were also abolished in fetal thyroids from mothers with BMI > 25. CONCLUSIONS: For the first time, we show that maternal smoking and high maternal BMI are associated with disturbed fetal thyroid gland development and endocrine function in a sex-specific manner during the second trimester. These findings suggest that predisposition to post-natal disease is mediated, in part, by altered fetal thyroid gland development.


Subject(s)
Body Mass Index , Obesity/complications , Smoking/adverse effects , Thyroid Gland/growth & development , Adult , Female , Humans , Pregnancy
12.
J Exp Zool A Ecol Integr Physiol ; 329(8-9): 473-487, 2018 10.
Article in English | MEDLINE | ID: mdl-30058288

ABSTRACT

Artificial light at night (ALAN) is increasingly recognized as a potential threat to wildlife and ecosystem health. Among the ecological effects of ALAN, changes in reproductive timing are frequently reported, but the mechanisms underlying this relationship are still poorly understood. Here, we experimentally investigated these mechanisms by assessing dose-dependent photoperiodic responses to ALAN in the great tit (Parus major). We individually exposed photosensitive male birds to one of three nocturnal light levels (0.5, 1.5, and 5 lux), or to a dark control. Subsequent histological and molecular analyses on their testes indicated a dose-dependent reproductive response to ALAN. Specifically, different stages of gonadal growth were activated after exposure to different levels of light at night. mRNA transcript levels of genes linked to the development of germ cells (stra8 and spo11) were increased under 0.5 lux compared to the dark control. The 0.5 and 1.5 lux groups showed slight increases in testis size and transcript levels associated with steroid synthesis (lhr and hsd3b1) and spermatogenesis (fshr, wt1, sox9, and cldn11), although spermatogenesis was not detected in histological analysis. In contrast, all birds under 5 lux had 10 to 30 times larger testes than birds in all other groups, with a parallel strong increase in mRNA transcript levels and clear signs of spermatogenesis. Across treatments, the volume of the testes was generally a good predictor of testicular transcript levels. Overall, our findings indicate that even small changes in nocturnal light intensity can increase, or decrease, effects on the reproductive physiology of wild organisms.


Subject(s)
Lighting/adverse effects , Passeriformes/physiology , Testis/radiation effects , Animals , Light/adverse effects , Male , Passeriformes/genetics , Passeriformes/metabolism , Photoperiod , Spermatogenesis/radiation effects , Testis/growth & development
13.
BMC Res Notes ; 11(1): 252, 2018 Apr 24.
Article in English | MEDLINE | ID: mdl-29690918

ABSTRACT

OBJECTIVE: Steroid hormones are responsible for the control of a wide range of physiological processes such as development, growth, reproduction, metabolism, and aging. Because of the variety of enzymes, substrates and products that take part in steroidogenesis and the compartmentalisation of its constituent reactions, it is a complex process to visualise and document. One of the goals of systems biology is to quantitatively describe the behaviour of complex biological systems that involve the interaction of many components. This can be done by representing these interactions visually in a pathway model and then optionally constructing a mathematical model of the interactions. RESULTS: We have used the modified Edinburgh Pathway Notation to construct a framework diagram describing human steroidogenic pathways, which will be of use to endocrinologists. To demonstrate further utility, we show how such models can be parameterised with empirical data within the software Graphia Professional, to recapitulate specific examples of steroid hormone production, and also to mimic gene knockout. These framework models support in silico hypothesis generation and testing with utility across endocrine endpoints, with significant potential to reduce costs, time and animal numbers, whilst informing the design of planned studies.


Subject(s)
Gonadal Steroid Hormones/biosynthesis , Models, Biological , Steroids/biosynthesis , Humans
14.
BMC Med ; 16(1): 23, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29429410

ABSTRACT

BACKGROUND: Human fetal adrenal glands are highly active and, with the placenta, regulate circulating progesterone, estrogen and corticosteroids in the fetus. At birth the adrenals are essential for neonate salt retention through secretion of aldosterone, while adequate glucocorticoids are required to prevent adrenal insufficiency. The objective of this study was to carry out the first comprehensive analysis of adrenal steroid levels and steroidogenic enzyme expression in normal second trimester human fetuses. METHODS: This was an observational study of steroids, messenger RNA transcripts and proteins in adrenals from up to 109 second trimester fetuses (11 weeks to 21 weeks) at the Universities of Aberdeen and Glasgow. The study design was balanced to show effects of maternal smoking. RESULTS: Concentrations of 19 intra-adrenal steroids were quantified using liquid chromatography and mass spectrometry. Pregnenolone was the most abundant steroid while levels of 17α-hydroxyprogesterone, dehydroepiandrosterone sulphate (DHEAS) and progesterone were also high. Cortisol was present in all adrenals, but aldosterone was undetected and Δ4 androgens were low/undetected. CYP17A1, CYP21A2 and CYP11A1 were all highly expressed and the proteins localized to the adrenal fetal zone. There was low-level expression of HSD3B and CYP11B2, with HSD3B located mainly in the definitive zone. Maternal smoking altered fetal plasma adrenocorticotropic hormone (ACTH) (P = 0.052) and intra-adrenal progesterone, 17α-hydroxyprogesterone and 16α-hydroxyprogesterone, but not plasma or intra-adrenal cortisol, or intra-adrenal DHEAS. Fetal adrenal GATA6 and NR5A1 were increased by maternal smoking. CONCLUSIONS: The human fetal adrenal gland produces cortisol but very low levels of Δ4 androgens and no detectable aldosterone throughout the second trimester. The presence of cortisol in fetal adrenals suggests that adrenal regulation of circulating fetal ACTH remains a factor in development of congenital adrenal hyperplasia during the second trimester, while a relative lack of aldosterone explains the salt-wasting disorders frequently seen in extreme pre-term neonates. Finally, maternal smoking may alter fetal adrenal sensitivity to ACTH, which could have knock-on effects on post-natal health.


Subject(s)
Adrenal Glands/metabolism , Aldosterone/metabolism , Fetus/drug effects , Adult , Aldosterone/analysis , Female , Humans , Pregnancy , Pregnancy Trimester, Second , Young Adult
15.
Methods Mol Biol ; 1748: 203-228, 2018.
Article in English | MEDLINE | ID: mdl-29453574

ABSTRACT

Testis development and function is regulated by intricate cell-cell cross talk. Characterization of the mechanisms underpinning this has been derived through a wide variety of approaches including pharmacological manipulation, transgenics, and cell-specific ablation of populations. The removal of all or a proportion of a specific cell type has been achieved through a variety of approaches. In this paper, we detail a combined transgenic and pharmacological approach to ablate the Sertoli or germ cell populations using diphtheria toxin in mice. We describe the key steps in generation, validation, and use of the models and also describe the caveats and cautions necessary. We also provide a detailed description of the methodology applied to characterize testis development and function in models of postnatal Sertoli or germ cell ablation.


Subject(s)
Diphtheria Toxin/pharmacology , Germ Cells/metabolism , Heparin-binding EGF-like Growth Factor/physiology , Poisons/pharmacology , Sertoli Cells/metabolism , Animals , Cells, Cultured , Germ Cells/cytology , Germ Cells/drug effects , Male , Mice , Mice, Transgenic , Sertoli Cells/cytology , Sertoli Cells/drug effects , Spermatogenesis
16.
Arch Toxicol ; 91(11): 3645, 2017 11.
Article in English | MEDLINE | ID: mdl-28980015

ABSTRACT

During manuscript proofing, the following sentence was not deleted in the section "Results" at the end of the paragraph: "Both male and female hepatocytes responded in a similar fashion to cotinine, whereas male hepatocyte function was more sensitive to chrysene, fluorene and naphthalene than female hepatocytes".

17.
Endocrinology ; 158(9): 2955-2969, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28911170

ABSTRACT

Sertoli cells regulate differentiation and development of the testis and are essential for maintaining adult testis function. To model the effects of dysregulating Sertoli cell number during development or aging, we have used acute diphtheria toxin-mediated cell ablation to reduce Sertoli cell population size. Results show that the size of the Sertoli cell population that forms during development determines the number of germ cells and Leydig cells that will be present in the adult testis. Similarly, the number of germ cells and Leydig cells that can be maintained in the adult depends directly on the size of the adult Sertoli cell population. Finally, we have used linear modeling to generate predictive models of testis cell composition during development and in the adult based on the size of the Sertoli cell population. This study shows that at all ages the size of the Sertoli cell population is predictive of resulting testicular cell composition. A reduction in Sertoli cell number/proliferation at any age will therefore lead to a proportional decrease in germ cell and Leydig cell numbers, with likely consequential effects on fertility and health.


Subject(s)
Germ Cells/cytology , Leydig Cells/cytology , Sertoli Cells/cytology , Testis/cytology , Aging/physiology , Animals , Cell Count , Cell Differentiation , Diphtheria Toxin/genetics , Genes, Transgenic, Suicide , Germ Cells/physiology , Growth and Development/physiology , Leydig Cells/physiology , Male , Mice , Mice, Transgenic , Peptide Fragments/genetics , Sertoli Cells/physiology , Sexual Maturation/physiology , Spermatogenesis/physiology , Spermatozoa/cytology , Spermatozoa/physiology , Testis/metabolism
19.
Arch Toxicol ; 91(11): 3633-3643, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28510779

ABSTRACT

The liver is a dynamic organ which is both multifunctional and highly regenerative. A major role of the liver is to process both endo and xenobiotics. Cigarettes are an example of a legal and widely used drug which can cause major health problems for adults and constitute a particular risk to the foetus, if the mother smokes during pregnancy. Cigarette smoke contains a complex mixture of thousands of different xenobiotics, including nicotine and polycyclic aromatic hydrocarbons. These affect foetal development in a sex-specific manner, inducing sex-dependant molecular responses in different organs. To date, the effect of maternal smoking on the foetal liver has been studied in vitro using cell lines, primary tissue and animal models. While these models have proven to be useful, poor cell phenotype, tissue scarcity, batch-to-batch variation and species differences have led to difficulties in data extrapolation toward human development. Therefore, in this study we have employed hepatoblasts, derived from pluripotent stem cells, to model the effects of xenobiotics from cigarette smoke on human hepatocyte development. Highly pure hepatocyte populations (>90%) were produced in vitro and exposed to factors present in cigarette smoke. Analysis of ATP levels revealed that, independent of the sex, the majority of smoking derivatives tested individually did not deplete ATP levels below 50%. However, following exposure to a cocktail of smoking derivatives, ATP production fell below 50% in a sex-dependent manner. This was paralleled by a loss metabolic activity and secretory ability in both female and male hepatocytes. Interestingly, cell depletion was less pronounced in female hepatocytes, whereas caspase activation was ~twofold greater, indicating sex differences in cell death upon exposure to the smoking derivatives tested.


Subject(s)
Hepatocytes/cytology , Hepatocytes/drug effects , Pluripotent Stem Cells/drug effects , Smoking/adverse effects , Adenosine Triphosphate/metabolism , Cell Differentiation , Cells, Cultured , Cotinine/toxicity , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Female , Humans , Male , Pluripotent Stem Cells/cytology , Polycyclic Aromatic Hydrocarbons/toxicity , Sex Factors , alpha-Fetoproteins/metabolism
20.
Biol Reprod ; 96(4): 733-742, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28339967

ABSTRACT

The placenta is a critical organ during pregnancy, essential for the provision of an optimal intrauterine environment, with fetal survival, growth, and development relying on correct placental function. It must allow nutritional compounds and relevant hormones to pass into the fetal bloodstream and metabolic waste products to be cleared. It also acts as a semipermeable barrier to potentially harmful chemicals, both endogenous and exogenous. Transporter proteins allow for bidirectional transport and are found in the syncytiotrophoblast of the placenta and endothelium of fetal capillaries. The major transporter families in the human placenta are ATP-binding cassette (ABC) and solute carrier (SLC), and insufficiency of these transporters may lead to deleterious effects on the fetus. Transporter expression levels are gestation-dependent and this is of considerable clinical interest as levels of drug resistance may be altered from one trimester to the next. This highlights the importance of these transporters in mediating correct and timely transplacental passage of essential compounds but also for efflux of potentially toxic drugs and xenobiotics. We review the current literature on placental molecular transporters with respect to their localization and ontogeny, the influence of fetal sex, and the relevance of animal models. We conclude that a paucity of information exists, and further studies are required to unlock the enigma of this dynamic organ.


Subject(s)
Gene Expression Regulation/physiology , Membrane Transport Proteins/metabolism , Placenta/metabolism , Female , Gestational Age , Humans , Male , Membrane Transport Proteins/genetics , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...