Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 10931, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-26047132

ABSTRACT

Divacancy defects in silicon carbide have long-lived electronic spin states and sharp optical transitions. Because of the various polytypes of SiC, hundreds of unique divacancies exist, many with spin properties comparable to the nitrogen-vacancy center in diamond. If ensembles of such spins can be all-optically manipulated, they make compelling candidate systems for quantum-enhanced memory, communication, and sensing applications. We report here direct all-optical addressing of basal plane-oriented divacancy spins in 4H-SiC. By means of magneto-spectroscopy, we fully identify the spin triplet structure of both the ground and the excited state, and use this for tuning of transition dipole moments between particular spin levels. We also identify a role for relaxation via intersystem crossing. Building on these results, we demonstrate coherent population trapping -a key effect for quantum state transfer between spins and photons- for divacancy sub-ensembles along particular crystal axes. These results, combined with the flexibility of SiC polytypes and device processing, put SiC at the forefront of quantum information science in the solid state.

2.
Phys Rev Lett ; 111(19): 193601, 2013 Nov 08.
Article in English | MEDLINE | ID: mdl-24266471

ABSTRACT

We demonstrate highly efficient switching of optical signals between two optical fibers controlled by a single atom. The key element of our experiment is a whispering-gallery-mode bottle microresonator, which is coupled to a single atom and interfaced by two tapered fiber couplers. This system reaches the strong coupling regime of cavity quantum electrodynamics, leading to a vacuum Rabi splitting in the excitation spectrum. We systematically investigate the switching efficiency of our system, i.e., the probability that the fiber-optical switch redirects the light into the desired output. We obtain a large redirection efficiency reaching a raw fidelity of more than 60% without postselection. Moreover, by measuring the second-order correlation functions of the output fields, we show that our switch exhibits a photon-number-dependent routing capability.

3.
Phys Rev Lett ; 110(21): 213604, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23745874

ABSTRACT

Light is often described as a fully transverse-polarized wave, i.e., with an electric field vector that is orthogonal to the direction of propagation. However, light confined in dielectric structures such as optical waveguides or whispering-gallery-mode microresonators can have a strong longitudinal polarization component. Here, using single (85)Rb atoms strongly coupled to a whispering-gallery-mode microresonator, we experimentally and theoretically demonstrate that the presence of this longitudinal polarization fundamentally alters the interaction between light and matter.

SELECTION OF CITATIONS
SEARCH DETAIL
...