Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 104(2): e3902, 2023 02.
Article in English | MEDLINE | ID: mdl-36310424

ABSTRACT

Understanding how megaherbivores incorporate habitat features into their foraging behavior is key toward understanding how herbivores shape the surrounding landscape. While the role of habitat structure has been studied within the context of predator-prey dynamics and grazing behavior in terrestrial systems, there is a limited understanding of how structure influences megaherbivore grazing in marine ecosystems. To investigate the response of megaherbivores (green turtles) to habitat features, we experimentally introduced structure at two spatial scales in a shallow seagrass meadow in The Bahamas. Turtle density increased 50-fold (to 311 turtles ha-1 ) in response to the structures, and turtles were mainly grazing and resting (low vigilance behavior). This resulted in a grazing patch exceeding the size of the experimental setup (242 m2 ), with reduced seagrass shoot density and aboveground biomass. After structure removal, turtle density decreased and vigilance increased (more browsing and shorter surfacing times), while seagrass within the patch partly recovered. Even at a small scale (9 m2 ), artificial structures altered turtle grazing behavior, resulting in grazing patches in 60% of the plots. Our results demonstrate that marine megaherbivores select habitat features as foraging sites, likely to be a predator refuge, resulting in heterogeneity in seagrass bed structure at the landscape scale.


Subject(s)
Ecosystem , Turtles , Animals , Turtles/physiology , Biomass , Herbivory , Bahamas
2.
J Fish Biol ; 92(1): 73-84, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29105768

ABSTRACT

Stomach contents were collected from 117 yellow rays Urobatis jamaicensis from three locations in south Eleuthera, The Bahamas and compared with ambient infauna via sediment surveys. Diets were relatively limited with a total of 535 prey items recovered, representing five taxonomic groups and dominated by polychaetes and decapod crustaceans (87% of total diet), while environmental sampling reported 5249 individual taxa represented by 62 taxonomic groups. Regardless of gravidity, sex or density of prey items among sites, no significant differences were detected. Foraging strategy plots suggested preferential prey is rare within the environment and the Manly-Chesson index validates polychaetes were consumed with high selectivity. This is the most comprehensive and updated assessment of comparative feeding in this species, particularly for The Bahamas, allowing insight into invertebrate community richness and diversity in ecologically sensitive coastal and nearshore habitats.


Subject(s)
Feeding Behavior , Gastrointestinal Contents , Skates, Fish/physiology , Animals , Bahamas , Diet , Ecology , Ecosystem
3.
Brain Behav Evol ; 81(4): 226-35, 2013.
Article in English | MEDLINE | ID: mdl-23817033

ABSTRACT

Quantitative studies of sensory axons provide invaluable insights into the functional significance and relative importance of a particular sensory modality. Despite the important role electroreception plays in the behaviour of elasmobranchs, to date, there have been no studies that have assessed the number of electrosensory axons that project from the peripheral ampullae to the central nervous system (CNS). The complex arrangement and morphology of the peripheral electrosensory system has a significant influence on its function. However, it is not sufficient to base conclusions about function on the peripheral system alone. To fully appreciate the function of the electrosensory system, it is essential to also assess the neural network that connects the peripheral system to the CNS. Using stereological techniques, unbiased estimates of the total number of axons were obtained for both the electrosensory bundles exiting individual ampullary organs and those entering the CNS (via the dorsal root of the anterior lateral line nerve, ALLN) in males and females of different sizes. The dorsal root of the ALLN consists solely of myelinated electrosensory axons and shows both ontogenetic and sexual dimorphism. In particular, females exhibit a greater abundance of electrosensory axons, which may result in improved sensitivity of the electrosensory system and may facilitate mate identification for reproduction. Also presented are detailed morphological data on the peripheral electrosensory system to allow a complete interpretation of the functional significance of the sexual dimorphism found in the ALLN.


Subject(s)
Axons/ultrastructure , Electric Organ/cytology , Lateral Line System/cytology , Sex Characteristics , Animals , Electric Fish , Electric Organ/anatomy & histology , Electric Organ/ultrastructure , Female , Lateral Line System/anatomy & histology , Lateral Line System/ultrastructure , Male , Nerve Fibers/ultrastructure
4.
J Fish Biol ; 82(6): 1805-20, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23731138

ABSTRACT

Dietary characteristics and the degree of dietary partitioning by five species of sympatric stingray were assessed using stomach content and sediment analyses within a coral reef lagoon at Ningaloo Reef, Western Australia (the cowtail Pastinachus atrus, blue-spotted fantail Taeniura lymma, blue-spotted mask Neotrygon kuhlii, porcupine Urogymnus asperrimus rays and the reticulate whipray Himantura uarnak). A total of 2804 items were recovered from the stomachs of 170 rays and 3215 individual taxa from the environment, which were used in selectivity analyses. Twenty-four prey taxa were identified from stomach contents and pooled into 10 taxonomic categories for analysis, of which annelids, prawns, brachyurans and bivalves were the most abundant, together accounting for 96% of the diet. Himantura uarnak had the greatest interspecific dissimilarity in diet, consuming a larger proportion of crustaceans, notably penaeids (41% of total diet) than the other four species of rays, all of which had diets dominated by annelids (71-82% of total diet). Crustacean specialization by H. uarnak may exist to maximize resources and reduce competition among sympatric species. The remaining species may partition resources on the basis of space, rather than diet.


Subject(s)
Coral Reefs , Feeding Behavior , Skates, Fish/physiology , Animals , Annelida , Australia , Biodiversity , Bivalvia , Brachyura , Crustacea , Diet , Female , Male , Population Dynamics , Sex Factors , Skates, Fish/classification , Species Specificity
5.
J Radiat Res ; 37(1): 38-48, 1996 Mar.
Article in English | MEDLINE | ID: mdl-8699395

ABSTRACT

This paper describes the response of mouse small intestine, at several time points after treatment with neutron or X-irradiation, using doses expected to give similar effects in terms of crypt/microcolony survival. Using resin histology, the effects of radiation on the numbers of duodenal cell types and measurements of tissue areas were assessed. The results for individual parameters and for an estimate of overall damage are given in a data display, which summarises the morphological profile of the organ after both types of radiation. Damage and recovery were seen for many of the parameters studied but there was no standard response pattern applicable for all parameters. In particular, the response of individual crypt cell types could not be predicted from knowledge of the change in crypt numbers. With regard to the holistic response of the gut, neutron irradiation appeared to have caused more damage and produced more early effects than the X-irradiation. More specifically, neutron treatment led to more damage to the neuromuscular components of the wall, while X-irradiation produced early vascular changes.


Subject(s)
Intestine, Small/radiation effects , Animals , Female , Intestine, Small/pathology , Mice , Mice, Inbred Strains , Neutrons , Whole-Body Irradiation , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...