Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Ecol Evol ; 8(4): 663-675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366132

ABSTRACT

Climate change is altering the functioning of foundational ecosystems. While the direct effects of warming are expected to influence individual species, the indirect effects of warming on species interactions remain poorly understood. In marine systems, as tropical herbivores undergo poleward range expansion, they may change food web structure and alter the functioning of key habitats. While this process ('tropicalization') has been documented within declining kelp forests, we have a limited understanding of how this process might unfold across other systems. Here we use a network of sites spanning 23° of latitude to explore the effects of increased herbivory (simulated via leaf clipping) on the structure of a foundational marine plant (turtlegrass). By working across its geographic range, we also show how gradients in light, temperature and nutrients modified plant responses. We found that turtlegrass near its northern boundary was increasingly affected (reduced productivity) by herbivory and that this response was driven by latitudinal gradients in light (low insolation at high latitudes). By contrast, low-latitude meadows tolerated herbivory due to high insolation which enhanced plant carbohydrates. We show that as herbivores undergo range expansion, turtlegrass meadows at their northern limit display reduced resilience and may be under threat of ecological collapse.


Subject(s)
Ecosystem , Herbivory , Food Chain , Forests , Climate Change , Plants
2.
Proc Biol Sci ; 290(1996): 20230262, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37040803

ABSTRACT

Understanding the factors shaping patterns of ecological resilience is critical for mitigating the loss of global biodiversity. Throughout aquatic environments, highly mobile predators are thought to serve as important vectors of energy between ecosystems thereby promoting stability and resilience. However, the role these predators play in connecting food webs and promoting energy flow remains poorly understood in most contexts. Using carbon and nitrogen isotopes, we quantified the use of several prey resource pools (small oceanic forage, large oceanics, coral reef, and seagrass) by 17 species of elasmobranch fishes (n = 351 individuals) in The Bahamas to determine their functional diversity and roles as ecosystem links. We observed remarkable functional diversity across species and identified four major groups responsible for connecting discrete regions of the seascape. Elasmobranchs were responsible for promoting energetic connectivity between neritic, oceanic and deep-sea ecosystems. Our findings illustrate how mobile predators promote ecosystem connectivity, underscoring their functional significance and role in supporting ecological resilience. More broadly, strong predator conservation efforts in developing island nations, such as The Bahamas, are likely to yield ecological benefits that enhance the resilience of marine ecosystems to combat imminent threats such as habitat degradation and climate change.


Subject(s)
Ecosystem , Elasmobranchii , Animals , Coral Reefs , Biodiversity , Fishes
3.
J Fish Biol ; 96(6): 1475-1488, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32191344

ABSTRACT

Limited data pertaining to life history and population connectivity of the data-deficient southern stingray (Hypanus americanus) are available. To determine potential vulnerabilities of their populations, this study aimed to analyse their movement patterns and genetic variability. A population of southern stingrays encompassing nine sites around Cape Eleuthera, the Bahamas, has been monitored using mark-recapture, spanning a 2.5 year period. Out of 200 individual stingrays, more than a third were encountered again. The home range of the females appears to be restricted, which supports the notion of high site residency. As resident populations of stingrays could suffer from a lack of population connectivity and be predestined for genetic isolation and local extirpation, this study further investigated the genetic connectivity of four sample sites in the central and western Bahamas. A haplotype analysis from the mitochondrial D-loop region showed that no distinct population structure strictly correlated with the sample site. These findings were complemented by five microsatellite loci that revealed high degrees in genotypic variability and little population differentiation. The results suggest gene flow mediated by both males and females.


Subject(s)
Genetic Variation , Skates, Fish/classification , Skates, Fish/genetics , Animal Migration , Animals , Bahamas , Demography , Female , Gene Flow , Genetics, Population , Genotype , Haplotypes , Male , Microsatellite Repeats/genetics
4.
Mar Pollut Bull ; 79(1-2): 61-8, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24434000

ABSTRACT

Efforts to curb pollution in the marine environment are covered by national and international legislation, yet weather balloons are released into the environment with no salvage agenda. Here, we assess impacts associated with weather balloons in the Great Barrier Reef World Heritage Area (GBRWHA). We use modeling to assess the probability of ocean endpoints for released weather balloons and predict pathways post-release. In addition, we use 21 months of data from beach cleanup events to validate our results and assess the abundance and frequency of weather balloon fragments in the GBRWHA. We found between 65% and 70% of balloons land in the ocean and ocean currents largely determine final endpoints. Beach cleanup data revealed 2460 weather balloon fragments were recovered from 24 sites within the GBRWHA. This is the first attempt to quantify this problem and these data will add support to a much-needed mitigation strategy for weather balloon waste.


Subject(s)
Coral Reefs , Environmental Monitoring/instrumentation , Meteorology/instrumentation , Models, Chemical , Water Pollutants/analysis , Australia , Water Pollution/statistics & numerical data
5.
PLoS One ; 8(10): e77194, 2013.
Article in English | MEDLINE | ID: mdl-24146968

ABSTRACT

We studied the age and growth of four sympatric stingrays: reticulate whipray, Himanutra uarnak (n=19); blue mask, Neotrygon kuhlii (n=34); cowtail, Pastinachus atrus (n=32) and blue-spotted fantail, Taeniura lymma (n=40) rays at Ningaloo Reef, a fringing coral reef on the north-western coast of western Australia. Age estimates derived from band counts within sectioned vertebrae ranged between 1 and 27 years (H. uarnak, 1 - 25 yrs.; N. kuhlii, 1.5 - 13 yrs.; P. atrus, 1 - 27 yrs. and T. lymma, 1 -11 yrs.). Due to limitations of sample sizes, we combined several analytical methods for estimating growth parameters. First, we used nonlinear least squares (NLS) to identify the growth model that best fitted the data. We then used this model, prior information and the data within a Bayesian framework to approximate the posterior distribution of the growth parameters. For all species the two-parameter von Bertalanffy growth model provided the best fit to size-at-age datasets. Based on this model, the Bayesian approach allowed the estimation of median values of W(D∞) (cm) and k (yr(-1)) for the four species (H. uarnak: 149 and 0.12; N. kuhlii: 42 and 0.38; P. atrus 156 and 0.16, and T. lymma 33 and 0.24, respectively). Our approach highlights the value of combining different analytical methods and prior knowledge for estimating growth parameters when data quality and quantity are limited.


Subject(s)
Elasmobranchii/growth & development , Animals , Bayes Theorem , Body Size , Coral Reefs , Female , Geography , Male , Models, Statistical , Reproducibility of Results , Seasons , Skates, Fish/growth & development , Western Australia
6.
PLoS One ; 7(6): e36479, 2012.
Article in English | MEDLINE | ID: mdl-22701556

ABSTRACT

DNA barcoding potentially offers scientists who are not expert taxonomists a powerful tool to support the accuracy of field studies involving taxa that are diverse and difficult to identify. The taxonomy of rays has received reasonable attention in Australia, although the fauna in remote locations such as Ningaloo Reef, Western Australia is poorly studied and the identification of some species in the field is problematic. Here, we report an application of DNA-barcoding to the identification of 16 species (from 10 genera) of tropical rays as part of an ecological study. Analysis of the dataset combined across all samples grouped sequences into clearly defined operational taxonomic units, with two conspicuous exceptions: the Neotrygon kuhlii species complex and the Aetobatus species complex. In the field, the group that presented the most difficulties for identification was the spotted whiptail rays, referred to as the 'uarnak' complex. Two sets of problems limited the successful application of DNA barcoding: (1) the presence of cryptic species, species complexes with unresolved taxonomic status and intra-specific geographical variation, and (2) insufficient numbers of entries in online databases that have been verified taxonomically, and the presence of lodged sequences in databases with inconsistent names. Nevertheless, we demonstrate the potential of the DNA barcoding approach to confirm field identifications and to highlight species complexes where taxonomic uncertainty might confound ecological data.


Subject(s)
DNA Barcoding, Taxonomic/methods , Phylogeny , Skates, Fish/classification , Skates, Fish/genetics , Animals , Base Sequence , Bayes Theorem , Cluster Analysis , DNA Primers/genetics , Evolution, Molecular , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity , Western Australia
SELECTION OF CITATIONS
SEARCH DETAIL
...