Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Commun Biol ; 7(1): 563, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740899

ABSTRACT

Targeting the estrogen receptor alpha (ERα) pathway is validated in the clinic as an effective means to treat ER+ breast cancers. Here we present the development of a VHL-targeting and orally bioavailable proteolysis-targeting chimera (PROTAC) degrader of ERα. In vitro studies with this PROTAC demonstrate excellent ERα degradation and ER antagonism in ER+ breast cancer cell lines. However, upon dosing the compound in vivo we observe an in vitro-in vivo disconnect. ERα degradation is lower in vivo than expected based on the in vitro data. Investigation into potential causes for the reduced maximal degradation reveals that metabolic instability of the PROTAC linker generates metabolites that compete for binding to ERα with the full PROTAC, limiting degradation. This observation highlights the requirement for metabolically stable PROTACs to ensure maximal efficacy and thus optimisation of the linker should be a key consideration when designing PROTACs.


Subject(s)
Estrogen Receptor alpha , Proteolysis , Von Hippel-Lindau Tumor Suppressor Protein , Humans , Estrogen Receptor alpha/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Female , Proteolysis/drug effects , Animals , Administration, Oral , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage
2.
Cancers (Basel) ; 15(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37296975

ABSTRACT

INTRODUCTION: Traditionally, brain metastases have been treated with stereotactic radiosurgery (SRS), whole-brain radiation (WBRT), and/or surgical resection. Non-small cell lung cancers (NSCLC), over half of which carry EGFR mutations, are the leading cause of brain metastases. EGFR-directed tyrosine kinase inhibitors (TKI) have shown promise in NSCLC; but their utility in NSCLC brain metastases (NSCLCBM) remains unclear. This work sought to investigate whether combining EGFR-TKI with WBRT and/or SRS improves overall survival (OS) in NSCLCBM. METHODS: A retrospective review of NSCLCBM patients diagnosed during 2010-2019 at a tertiary-care US center was performed and reported following the 'strengthening the reporting of observational studies in epidemiology' (STROBE) guidelines. Data regarding socio-demographic and histopathological characteristics, molecular attributes, treatment strategies, and clinical outcomes were collected. Concurrent therapy was defined as the combination of EGFR-TKI and radiotherapy given within 28 days of each other. RESULTS: A total of 239 patients with EGFR mutations were included. Of these, 32 patients had been treated with WBRT only, 51 patients received SRS only, 36 patients received SRS and WBRT only, 18 were given EGFR-TKI and SRS, and 29 were given EGFR-TKI and WBRT. Median OS for the WBRT-only group was 3.23 months, for SRS + WBRT it was 3.17 months, for EGFR-TKI + WBRT 15.50 months, for SRS only 21.73 months, and for EGFR-TKI + SRS 23.63 months. Multivariable analysis demonstrated significantly higher OS in the SRS-only group (HR = 0.38, 95% CI 0.17-0.84, p = 0.017) compared to the WBRT reference group. There were no significant differences in overall survival for the SRS + WBRT combination cohort (HR = 1.30, 95% CI = 0.60, 2.82, p = 0.50), EGFR-TKIs and WBRT combination cohort (HR = 0.93, 95% CI = 0.41, 2.08, p = 0.85), or the EGFR-TKI + SRS cohort (HR = 0.46, 95% CI = 0.20, 1.09, p = 0.07). CONCLUSIONS: NSCLCBM patients treated with SRS had a significantly higher OS compared to patients treated with WBRT-only. While sample-size limitations and investigator-associated selection bias may limit the generalizability of these results, phase II/III clinicals trials are warranted to investigate synergistic efficacy of EGFR-TKI and SRS.

3.
Cancers (Basel) ; 15(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37190312

ABSTRACT

Introduction: Up to 50% of non-small cell lung cancer (NSCLC) harbor EGFR alterations, the most common etiology behind brain metastases (BMs). First-generation EGFR-directed tyrosine kinase inhibitors (EGFR-TKI) are limited by blood-brain barrier penetration and T790M tumor mutations, wherein third-generation EGFR-TKIs, like Osimertinib, have shown greater activity. However, their efficacy has not been well-studied in later therapy lines in NSCLC patients with BMs (NSCLC-BM). We sought to compare outcomes of NSCLC-BM treated with either first- or third-generation EGFR-TKIs in first-line and 2nd-to-5th-line settings. Methods: A retrospective review of NSCLC-BM patients diagnosed during 2010-2019 at Cleveland Clinic, Ohio, US, a quaternary-care center, was performed and reported following 'strengthening the reporting of observational studies in epidemiology' (STROBE) guidelines. Data regarding socio-demographic, histopathological, molecular characteristics, and clinical outcomes were collected. Primary outcomes were median overall survival (mOS) and progression-free survival (mPFS). Multivariable Cox proportional hazards modeling and propensity score matching were utilized to adjust for confounders. Results: 239 NSCLC-BM patients with EGFR alterations were identified, of which 107 received EGFR-TKIs after diagnosis of BMs. 77.6% (83/107) received it as first-line treatment, and 30.8% (33/107) received it in later (2nd-5th) lines of therapy, with nine patients receiving it in both settings. 64 of 107 patients received first-generation (erlotinib/gefitinib) TKIs, with 53 receiving them in the first line setting and 13 receiving it in the 2nd-5th lines of therapy. 50 patients received Osimertinib as third-generation EGFR-TKI, 30 in first-line, and 20 in the 2nd-5th lines of therapy. Univariable analysis in first-line therapy demonstrated mOS of first- and third-generation EGFR-TKIs as 18.2 and 19.4 months, respectively (p = 0.57), while unadjusted mPFS of first- and third-generation EGFR-TKIs was 9.3 and 13.8 months, respectively (p = 0.14). In 2nd-5th line therapy, for first- and third-generation EGFR-TKIs, mOS was 17.3 and 11.9 months, (p = 0.19), while mPFS was 10.4 and 6.08 months, respectively (p = 0.41). After adjusting for age, performance status, presence of extracranial metastases, whole-brain radiotherapy, and presence of leptomeningeal metastases, hazard ratio (HR) for OS was 1.25 (95% CI 0.63-2.49, p = 0.52) for first-line therapy. Adjusted HR for mOS in 2nd-to-5th line therapy was 1.60 (95% CI 0.55-4.69, p = 0.39). Conclusions: No difference in survival was detected between first- and third-generation EGFR-TKIs in either first or 2nd-to-5th lines of therapy. Larger prospective studies are warranted reporting intracranial lesion size, EGFR alteration and expression levels in primary tumor and brain metastases, and response rates.

4.
SLAS Discov ; 25(6): 618-633, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32476557

ABSTRACT

CRISPR/Cas9 is increasingly being used as a tool to prosecute functional genomic screens. However, it is not yet possible to apply the approach at scale across a full breadth of cell types and endpoints. In order to address this, we developed a novel and robust workflow for array-based lentiviral CRISPR/Cas9 screening. We utilized a ß-lactamase reporter gene assay to investigate mediators of TNF-α-mediated NF-κB signaling. The system was adapted for CRISPR/Cas9 through the development of a cell line stably expressing Cas9 and application of a lentiviral gRNA library comprising mixtures of four gRNAs per gene. We screened a 743-gene kinome library whereupon hits were independently ranked by percent inhibition, Z' score, strictly standardized mean difference, and T statistic. A consolidated and optimized ranking was generated using Borda-based methods. Screening data quality was above acceptable limits (Z' ≥ 0.5). In order to determine the contribution of individual gRNAs and to better understand false positives and negatives, a subset of gRNAs, against 152 genes, were profiled in singlicate format. We highlight the use of known reference genes and high-throughput, next-generation amplicon and RNA sequencing to assess screen data quality. Screening with singlicate gRNAs was more successful than screening with mixtures at identifying genes with known regulatory roles in TNF-α-mediated NF-κB signaling and was found to be superior to previous RNAi-based methods. These results add to the available data on TNF-α-mediated NF-κB signaling and establish a high-throughput functional genomic screening approach, utilizing a vector-based arrayed gRNA library, applicable across a wide variety of endpoints and cell types at a genome-wide scale.


Subject(s)
CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , NF-kappa B/genetics , Tumor Necrosis Factor-alpha/genetics , Gene Library , Genes, Reporter/genetics , Genome, Human/genetics , High-Throughput Screening Assays/methods , Humans , Phosphotransferases/classification , Phosphotransferases/genetics , RNA, Guide, Kinetoplastida/genetics , Signal Transduction/genetics , beta-Lactamases/genetics
5.
SLAS Discov ; 25(6): 646-654, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32394775

ABSTRACT

Genome-wide arrayed CRISPR screening is a powerful method for drug target identification as it enables exploration of the effect of individual gene perturbations using diverse highly multiplexed functional and phenotypic assays. Using high-content imaging, we can measure changes in biomarker expression, intracellular localization, and cell morphology. Here we present the computational pipeline we have developed to support the analysis and interpretation of arrayed CRISPR screens. This includes evaluating the quality of guide RNA libraries, performing image analysis, evaluating assay results quality, data processing, hit identification, ranking, visualization, and biological interpretation.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Computational Biology , High-Throughput Screening Assays/trends , RNA, Guide, Kinetoplastida/genetics , Biomarkers/analysis , Drug Discovery , Gene Library , Genome, Human/genetics , Humans , Molecular Imaging/trends
6.
Pediatr Dermatol ; 33(2): e106-8, 2016.
Article in English | MEDLINE | ID: mdl-27001331

ABSTRACT

Hair follicle nevi are rare, benign, congenital hamartomas that usually occur in the distribution of the first brachial arch. Histopathologically, the distinction between hair follicle nevus, trichofolliculoma, and accessory tragus has recently come into question, and it may be that they are all on a spectrum of the same condition. We report the case of a 7-day-old boy who presented with a "tag"-like lesion on his midline chin that had been present since birth. Biopsy of the lesion proved it to be a hair follicle nevus.


Subject(s)
Hair Diseases/pathology , Hair Follicle/pathology , Nevus/pathology , Skin Neoplasms/pathology , Chin/pathology , Diagnosis, Differential , Humans , Infant , Infant, Newborn , Male
7.
J Drugs Dermatol ; 14(12): 1389-91, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26659930

ABSTRACT

BACKGROUND: Recent studies have produced treatment algorithms for hand dermatitis, but there are limited current indications of systemic treatments for chronic hand dermatitis. OBJECTIVE: To compare the efficacy and safety of methotrexate and acitretin in the treatment of chronic hand dermatitis. METHODS: A chart-retrospective review of all patients with hand dermatitis seen by the primary author at the University of North Carolina Dermatology and Skin Cancer Center from September 2007 to April 2013. RESULTS: Eighty-three hand dermatitis charts were reviewed. Twenty-nine patients received systemic therapy, of which 17 (26.5%) were treated systemically with acitretin and/or methotrexate. Of these 17 patients, four patients received courses of both acitretin and methotrexate independently after failing the alternative treatment course. At 6 months, acitretin achieved clearance/almost clearance in 44% of patients, compared to 0% of those treated with methotrexate. At 12 months, 100% of patients treated with acitretin achieved clearance/almost clearance compared to 40% of patients treated with methotrexate. Adverse effects were minimal and as expected. LIMITATIONS: This was a retrospective study, and the small sample size makes it difficult to generalize results. CONCLUSION: Systemic retinoids are a good alternative for the treatment of chronic hand dermatitis.


Subject(s)
Acitretin/therapeutic use , Dermatologic Agents/therapeutic use , Hand Dermatoses/drug therapy , Keratolytic Agents/therapeutic use , Methotrexate/therapeutic use , Acitretin/administration & dosage , Acitretin/adverse effects , Adult , Aged , Chronic Disease , Dermatologic Agents/administration & dosage , Dermatologic Agents/adverse effects , Female , Hand Dermatoses/microbiology , Humans , Keratolytic Agents/administration & dosage , Keratolytic Agents/adverse effects , Male , Methotrexate/administration & dosage , Methotrexate/adverse effects , Middle Aged
8.
Antimicrob Agents Chemother ; 58(10): 5929-35, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25070102

ABSTRACT

Carbapenems are a mainstay of treatment for infections caused by Pseudomonas aeruginosa. Carbapenem resistance mediated by metallo-ß-lactamases (MBLs) remains uncommon in the United States, despite the worldwide emergence of this group of enzymes. Between March 2012 and May 2013, we detected MBL-producing P. aeruginosa in a university-affiliated health care system in northeast Ohio. We examined the clinical characteristics and outcomes of patients, defined the resistance determinants and structure of the genetic element harboring the blaMBL gene through genome sequencing, and typed MBL-producing P. aeruginosa isolates using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR (rep-PCR), and multilocus sequence typing (MLST). Seven patients were affected that were hospitalized at three community hospitals, a long-term-care facility, and a tertiary care center; one of the patients died as a result of infection. Isolates belonged to sequence type 233 (ST233) and were extensively drug resistant (XDR), including resistance to all fluoroquinolones, aminoglycosides, and ß-lactams; two isolates were nonsusceptible to colistin. The blaMBL gene was identified as blaVIM-2 contained within a class 1 integron (In559), similar to the cassette array previously detected in isolates from Norway, Russia, Taiwan, and Chicago, IL. Genomic sequencing and assembly revealed that In559 was part of a novel 35-kb region that also included a Tn501-like transposon and Salmonella genomic island 2 (SGI2)-homologous sequences. This analysis of XDR strains producing VIM-2 from northeast Ohio revealed a novel recombination event between Salmonella and P. aeruginosa, heralding a new antibiotic resistance threat in this region's health care system.


Subject(s)
Genomic Islands/genetics , Pseudomonas aeruginosa/genetics , Salmonella/genetics , Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Electrophoresis, Gel, Pulsed-Field , Fluoroquinolones/pharmacology , Multilocus Sequence Typing , Ohio , Polymerase Chain Reaction , Pseudomonas aeruginosa/drug effects , Salmonella/drug effects , beta-Lactams/pharmacology
9.
Stem Cell Res ; 12(2): 415-27, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24382458

ABSTRACT

Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) can differentiate into multiple lineages including osteogenic and adipogenic cells. Wnt signalling has been implicated in controlling BMSC fate, but the mechanisms are unclear and apparently conflicting data exist. Here we show that a novel glycogen synthase kinase 3ß inhibitor, AR28, is a potent activator of canonical Wnt signalling using in vitro ß-catenin translocation studies and TCF-reporter assays. In vivo, AR28 induced characteristic axis duplication and secondary regions of chordin expression in Xenopus laevis embryos. Using human BMSCs grown in adipogenic medium, we confirmed that AR28-mediated Wnt signalling caused a significant (p<0.05) dose-dependent reduction of adipogenic markers. In osteogenic media, including dexamethasone, AR28 caused significant (p<0.05) decreases in alkaline phosphatase (ALP) activity compared to vehicle controls, indicative of a reduced osteogenic response. However, when excluding dexamethasone from the osteogenic media, increases in both ALP and mineralisation were identified following AR28 treatment, which was blocked by mitomycin C. Pre-treatment of BMSCs with AR28 for 7 days before osteogenic induction also increased ALP activity and mineralisation. Furthermore, BMP2-induced osteogenic differentiation was strongly enhanced by AR28 addition within 3 days, but without concomitant changes in cell number, therefore revealing BMP-dependent and independent mechanisms for Wnt-induced osteogenesis.


Subject(s)
Bone Marrow Cells/cytology , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Mesenchymal Stem Cells/cytology , Wnt Proteins/metabolism , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/enzymology , Bone Marrow Cells/metabolism , Bone Morphogenetic Protein 2/pharmacology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Line , Dexamethasone/pharmacology , Drug Synergism , Glycogen Synthase Kinase 3 beta , Humans , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/enzymology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C3H , Osteogenesis/drug effects , Wnt Signaling Pathway/drug effects , Xenopus laevis
10.
Toxicol Appl Pharmacol ; 272(2): 399-407, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23872097

ABSTRACT

Wnt activation by inhibiting glycogen synthase kinase 3 (GSK-3) causes bone anabolism in rodents making GSK-3 a potential therapeutic target for osteoporotic and osteolytic metastatic bone disease. To understand the wnt pathway related to human disease translation, the ability of 3 potent inhibitors of GSK-3 (AZD2858, AR79, AZ13282107) to 1) drive osteoblast differentiation and mineralisation using human adipose-derived stem cells (hADSC) in vitro; and 2) stimulate rat bone formation in vivo was investigated. Bone anabolism/resorption was determined using clinically relevant serum biomarkers as indicators of bone turnover and bone formation assessed in femurs by histopathology and pQCT/µCT imaging. GSK-3 inhibitors caused ß-catenin stabilisation in human and rat mesenchymal stem cells, stimulated hADSC commitment towards osteoblasts and osteogenic mineralisation in vitro. AZD2858 produced time-dependent changes in serum bone turnover biomarkers and increased bone mass over 28 days exposure in rats. After 7 days, AZD2858, AR79 or AZ13282107 exposure increased the bone formation biomarker P1NP, and reduced the resorption biomarker TRAcP-5b, indicating increased bone anabolism and reduced resorption in rats. This biomarker profile was differentiated from anabolic agent PTH1-34 or the anti-resorptive Alendronate-induced changes. Increased bone formation in cortical and cancellous bone as assessed by femur histopathology supported biomarker changes. 14 day AR79 treatment increased bone mineral density and trabecular thickness, and decreased trabecular number and connectivity assessed by pQCT/µCT. GSK-3 inhibition caused hADSC osteoblastogenesis and mineralisation in vitro. Increased femur bone mass associated with changes in bone turnover biomarkers confirmed in vivo bone formation and indicated uncoupling of bone formation and resorption.


Subject(s)
Bone Remodeling/drug effects , Enzyme Inhibitors/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Mesenchymal Stem Cells/drug effects , Osteoblasts/drug effects , Osteogenesis/drug effects , Animals , Biomarkers/blood , Bone Density/drug effects , Cell Differentiation/drug effects , Enzyme Inhibitors/chemistry , Female , Femur/drug effects , Femur/metabolism , Femur/pathology , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/enzymology , Molecular Structure , Osteoblasts/cytology , Osteoblasts/enzymology , Rats , Rats, Sprague-Dawley
11.
J Biol Chem ; 287(21): 17812-17822, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22442145

ABSTRACT

Thyroid hormone (T(3)) acts in chondrocytes and bone-forming osteoblasts to control bone development and maintenance, but the signaling pathways mediating these effects are poorly understood. Thrb(PV/PV) mice have a severely impaired pituitary-thyroid axis and elevated thyroid hormone levels due to a dominant-negative mutant T(3) receptor (TRß(PV)) that cannot bind T(3) and interferes with the actions of wild-type TR. Thrb(PV/PV) mice have accelerated skeletal development due to unknown mechanisms. We performed microarray studies in primary osteoblasts from wild-type mice and Thrb(PV/PV) mice. Activation of the canonical Wnt signaling in Thrb(PV/PV) mice was confirmed by in situ hybridization analysis of Wnt target gene expression in bone during postnatal growth. By contrast, T(3) treatment inhibited Wnt signaling in osteoblastic cells, suggesting that T(3) inhibits the Wnt pathway by facilitating proteasomal degradation of ß-catenin and preventing its accumulation in the nucleus. Activation of the Wnt pathway in Thrb(PV/PV) mice, however, results from a gain of function for TRß(PV) that stabilizes ß-catenin despite the presence of increased thyroid hormone levels. These studies demonstrate novel interactions between T(3) and Wnt signaling pathways in the regulation of skeletal development and bone formation.


Subject(s)
Mutation , Osteoblasts/metabolism , Osteogenesis/physiology , Pituitary Gland/metabolism , Thyroid Hormone Receptors beta/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Animals , Mice , Mice, Mutant Strains , Osteoblasts/cytology , Protein Stability , Thyroid Hormone Receptors beta/genetics , Triiodothyronine/metabolism , Triiodothyronine/pharmacology , beta Catenin/genetics
12.
BMC Fam Pract ; 12: 88, 2011 Aug 17.
Article in English | MEDLINE | ID: mdl-21849052

ABSTRACT

BACKGROUND: The beneficial outcomes of oral anticoagulation therapy are dependent upon achieving and maintaining an optimal INR therapeutic range. There is growing evidence that better outcomes are achieved when anticoagulation is managed by a pharmacist with expertise in anticoagulation management rather than usual care by family physicians. This study compared a pharmacist managed anticoagulation program (PC) to usual physician care (UC) in a family medicine clinic. METHODS: A retrospective cohort study was carried out in a family medicine clinic which included a clinical pharmacist. In 2006, the pharmacist assumed anticoagulation management. For a 17-month period, the PC group (n = 112) of patients on warfarin were compared to the UC patients (n = 81) for a similar period prior to 2006. The primary outcome was the percentage of time patients' INR was in the therapeutic range (TTR). Secondary outcomes were the percentage of time in therapeutic range within ± 0.3 units of the recommended range (expanded TTR) and percentage of time the INR was >5.0 or <1.5. RESULTS: The baseline characteristics were similar between the groups. Fifty-five percent of the PC group was male with a mean age of 67 years; 51% of the UC group was male with a mean age of 71 years. The most common indications for warfarin in both groups were atrial fibrillation, mechanical heart valves and deep vein thrombosis. The TTR was 73% for PC and 65% for UC (p < 0.0001). The expanded TTR for PC was 91% and 85% for UC (p < 0.0001). The percentage of time INR values were <1.5 was 0.7% for PC patients and 1.9% for UC patients (p < 0.0001), and >5 were 0.3% for PC patients and 0.1% for UC (p < 0.0001). CONCLUSION: The pharmacist-managed anticoagulation program within a family practice clinic compared to usual care by the physicians achieved significantly better INR control as measured by the percentage of time patients' INR values were kept in both the therapeutic and expanded range. Based on the results of this study, a collaborative family practice clinic using pharmacists and physicians may be an effective model for anticoagulation management with these results verified in future prospective randomized studies.


Subject(s)
Anticoagulants/therapeutic use , Family Practice , Pharmaceutical Services , Aged , Ambulatory Care Facilities , Cohort Studies , Female , Humans , Male , Middle Aged , Retrospective Studies
13.
J Bone Miner Res ; 26(4): 811-21, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20939016

ABSTRACT

Small molecules are attractive therapeutics to amplify and direct differentiation of stem cells. They also can be used to understand the regulation of their fate by interfering with specific signaling pathways. Mesenchymal stem cells (MSCs) have the potential to proliferate and differentiate into several cell types, including osteoblasts. Activation of canonical Wnt signaling by inhibition of glycogen synthase kinase 3 (GSK-3) has been shown to enhance bone mass, possibly by involving a number of mechanisms ranging from amplification of the mesenchymal stem cell pool to the commitment and differentiation of osteoblasts. Here we have used a highly specific novel inhibitor of GSK-3, AR28, capable of inducing ß-catenin nuclear translocation and enhanced bone mass after 14 days of treatment in BALB/c mice. We have shown a temporally regulated increase in the number of colony-forming units-osteoblast (CFU-O) and -adipocyte (CFU-A) but not colony-forming units-fibroblast (CFU-F) in mice treated for 3 days. However, the number of CFU-O and CFU-A returned to normal levels after 14 days of treatment, and the number of CFU-F was decreased significantly. In contrast, the number of osteoblasts increased significantly only after 14 days of treatment, and this was seen together with a significant decrease in bone marrow adiposity. These data suggest that the increased bone mass is the result of an early temporal wave of amplification of a subpopulation of MSCs with both osteogenic and adipogenic potential, which is driven to osteoblast differentiation at the expense of adipogenesis.


Subject(s)
Adipocytes/cytology , Cell Differentiation/drug effects , Glycogen Synthase Kinase 3/antagonists & inhibitors , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Protein Kinase Inhibitors/pharmacology , Acid Phosphatase/metabolism , Adipocytes/metabolism , Alkaline Phosphatase/metabolism , Animals , Bone Marrow/drug effects , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Calcification, Physiologic/drug effects , Cell Count , Cell Differentiation/physiology , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Colony-Forming Units Assay , Fibroblasts/cytology , Gene Expression/drug effects , Gene Expression/genetics , Glycogen Synthase Kinase 3 beta , Isoenzymes/metabolism , Lipoprotein Lipase/genetics , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Osteoblasts/metabolism , Osteocalcin/genetics , Osteoclasts/cytology , Osteoclasts/metabolism , Osteogenesis/drug effects , PPAR gamma/genetics , Protein Kinase Inhibitors/administration & dosage , Radiography , Tartrate-Resistant Acid Phosphatase , Tibia/anatomy & histology , Tibia/cytology , Tibia/diagnostic imaging , Tibia/drug effects , beta Catenin/metabolism
14.
J Behav Health Serv Res ; 37(1): 4-24, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19462245

ABSTRACT

The development of a detailed model of substance-abuse treatment (SAT) staff performance is described. The model describes the key behaviors of SAT staff. Specifically, researchers used the critical incident technique to develop the model, which includes a total of 15 dimensions, nested under four meta-dimensions: providing clinical services, employee citizenship behaviors, providing clinical support, and managerial behavior. Development and validation of a measure based on the model are also described. More than 600 SAT staff members in 51 SAT agencies completed the new measure. Factor analyses supported the measure's hypothesized dimensional structure; high internal consistency reliabilities were observed for all scales; and interrater agreement metrics indicated an acceptable level of within-agency agreement. Moreover, the measure correlated in expected and theoretically consistent ways with measures of job satisfaction and other job-related opinions.


Subject(s)
Models, Organizational , Process Assessment, Health Care , Quality of Health Care , Substance Abuse Treatment Centers , Total Quality Management , Analysis of Variance , Efficiency, Organizational , Factor Analysis, Statistical , Humans , Interprofessional Relations , Leadership , Program Development , Program Evaluation , Workplace
15.
Curr Opin Endocrinol Diabetes Obes ; 14(5): 410-5, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17940472

ABSTRACT

PURPOSE OF REVIEW: Thyroid hormone and fibroblast growth factors are critically important for normal development. Recent evidence points to complex interactions between thyroid hormone and fibroblast growth factors that regulate cell proliferation and differentiation. We discuss mechanisms of thyroid hormone and fibroblast growth factor action, and identify downstream signalling responses that offer opportunities for regulatory crosstalk. RECENT FINDINGS: Thyroid hormone action is mediated by nuclear receptors that regulate gene expression in response to thyroid hormone. Recent studies have shown thyroid hormone also acts at the cell membrane via the alpha(V)beta(3) integrin receptor and these actions also communicate with nuclear responses to thyroid hormone. Fibroblast growth factors act via receptor tyrosine kinases to stimulate second messenger pathways that also communicate with nuclear events. Several common pathways, including mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and signal transducer and activator of transcription signalling, are activated by thyroid hormone and fibroblast growth factor, and may act as points of convergence for interaction in tissues, such as bone, central nervous system and heart, as well as in the extra-cellular matrix and during angiogenesis. SUMMARY: Although there is convincing evidence that thyroid hormone and fibroblast growth factors interact widely, little is known about molecular mechanisms that determine this interplay. Future research in this expanding field may result in identification of new pharmacological targets for manipulation of cell proliferation and differentiation.


Subject(s)
Fibroblast Growth Factors/metabolism , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Signal Transduction , Thyroid Hormones/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Differentiation , Cell Proliferation , Enzyme Activation , Gene Expression Regulation , Humans , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism
16.
Endocrinology ; 148(12): 5966-76, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17761769

ABSTRACT

T(3) is essential for normal skeletal development, acting mainly via the TRalpha1 nuclear receptor. Nevertheless, the mechanisms of T(3) action in bone are poorly defined. Fibroblast growth factor receptor-1 (FGFR1) is also essential for bone formation. Fgfr1 expression and activity are positively regulated by T(3) in osteoblasts, and in mice that harbor a dominant negative PV mutation targeted to TRalpha1 or TRbeta, Fgfr1 expression is sensitive to skeletal thyroid status. To investigate mechanisms underlying T(3) regulation of FGFR1, we obtained primary calvarial osteoblasts from wild-type and TRbeta(PV/PV) littermate mice. T(3) treatment increased Fgfr1 expression 2-fold in wild-type cells, but 8-fold in TRbeta(PV/PV) osteoblasts. The 4-fold increased T(3) sensitivity of TRbeta(PV/PV) osteoblasts was associated with a markedly increased ratio of TRalpha1:TRbeta1 expression that resulted from reduced TRbeta1 expression in TRbeta(PV/PV) osteoblasts compared with wild-type. Bioinformatics and gel shift studies, and mutational analysis, identified a specific TR binding site 279-264 nucleotides upstream of the murine Fgfr1 promoter transcription start site. Transient transfection analysis of a series of Fgfr1 promoter 5'-deletion constructs, of a mutant reporter construct, and a series of heterologous promoter constructs, confirmed that this region of the promoter mediates a TR-dependent transcriptional response to T(3). Thus, in addition to indirect regulation of FGFR1 expression by T(3) reported previously, T(3) also activates the Fgfr1 promoter directly via a thyroid hormone response element located at positions -279/-264.


Subject(s)
Gene Expression Regulation/drug effects , Promoter Regions, Genetic/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Response Elements/genetics , Thyroid Hormones/pharmacology , Animals , Base Sequence , Cells, Cultured , Electrophoretic Mobility Shift Assay , Enzyme-Linked Immunosorbent Assay , Mice , Molecular Sequence Data , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Protein Binding , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism , Thyroid Hormone Receptors beta/genetics , Thyroid Hormone Receptors beta/metabolism
17.
Mol Endocrinol ; 21(5): 1095-107, 2007 May.
Article in English | MEDLINE | ID: mdl-17327419

ABSTRACT

Thyrotoxicosis is an important but under recognized cause of osteoporosis. Recently, TSH deficiency, rather than thyroid hormone excess, has been suggested as the underlying cause. To investigate the molecular mechanism of osteoporosis in thyroid disease, we characterized the skeleton in mice lacking either thyroid hormone receptor alpha or beta (TRalpha(0/0), TRbeta-/-). Remarkably, in the presence of normal circulating thyroid hormone and TSH concentrations, adult TRalpha(0/0) mice had osteosclerosis accompanied by reduced osteoclastic bone resorption, whereas juveniles had delayed endochondral ossification with reduced bone mineral deposition. By contrast, adult TRbeta-/- mice with elevated TSH and thyroid hormone levels were osteoporotic with evidence of increased bone resorption, whereas juveniles had advanced ossification with increased bone mineral deposition. Analysis of T3 target gene expression revealed skeletal hypothyroidism in TRalpha(0/0) mice, but skeletal thyrotoxicosis in TRbeta-/- mice. These studies demonstrate that bone loss in thyrotoxicosis is independent of circulating TSH levels and mediated predominantly by TRalpha, thus identifying TRalpha as a novel drug target in the prevention and treatment of osteoporosis.


Subject(s)
Hyperthyroidism/physiopathology , Osteoporosis/etiology , Thyroid Hormones/physiology , Thyrotropin/deficiency , Aging , Animals , Animals, Newborn , Bone Density , Bone Resorption/genetics , Bone and Bones/pathology , Bone and Bones/ultrastructure , Embryo, Mammalian , Hyperthyroidism/pathology , Mice , Mice, Knockout , Microscopy, Electron, Scanning , Osteoporosis/genetics , Osteoporosis/pathology , Thyroid Hormone Receptors alpha/deficiency , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors beta/deficiency , Thyroid Hormone Receptors beta/genetics , Thyrotropin/physiology
18.
Nucl Recept Signal ; 4: e011, 2006.
Article in English | MEDLINE | ID: mdl-16862217

ABSTRACT

Bone development is extremely sensitive to alterations in thyroid status. Recently, we analyzed the skeletal phenotypes of mice with the dominant negative resistance to thyroid hormone (RTH) mutation PV targeted to either the thyroid hormone receptor (TR) alpha1 or beta gene. This perspective summarizes our findings to date and explores the wider implications for thyroid status and T3 target gene expression in individual tissues.

19.
Mol Endocrinol ; 19(12): 3045-59, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16051666

ABSTRACT

Thyroid hormone (T(3)) regulates bone turnover and mineralization in adults and is essential for skeletal development. Surprisingly, we identified a phenotype of skeletal thyrotoxicosis in T(3) receptor beta(PV) (TRbeta(PV)) mice in which a targeted frameshift mutation in TRbeta results in resistance to thyroid hormone. To characterize mechanisms underlying thyroid hormone action in bone, we analyzed skeletal development in TRalpha1(PV) mice in which the same PV mutation was targeted to TRalpha1. In contrast to TRbeta(PV) mice, TRalpha1(PV) mutants exhibited skeletal hypothyroidism with delayed endochondral and intramembranous ossification, severe postnatal growth retardation, diminished trabecular bone mineralization, reduced cortical bone deposition, and delayed closure of the skull sutures. Skeletal hypothyroidism in TRalpha1(PV) mutants was accompanied by impaired GH receptor and IGF-I receptor expression and signaling in the growth plate, whereas GH receptor and IGF-I receptor expression and signaling were increased in TRbeta(PV) mice. These data indicate that GH receptor and IGF-I receptor are physiological targets for T(3) action in bone in vivo. The divergent phenotypes observed in TRalpha1(PV) and TRbeta(PV) mice arise because the pituitary gland is a TRbeta-responsive tissue, whereas bone is TRalpha responsive. These studies provide a new understanding of the complex relationship between central and peripheral thyroid status.


Subject(s)
Bone Development/genetics , Hyperthyroidism/genetics , Hypothyroidism/genetics , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors beta/genetics , Animals , Bone Density/genetics , Bone and Bones/chemistry , Bone and Bones/cytology , Frameshift Mutation , Hyperthyroidism/metabolism , Hypothyroidism/metabolism , Mice , Mice, Mutant Strains , Osteogenesis/genetics , Phenotype , Pituitary Gland/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism , Thyroid Hormone Receptors alpha/analysis , Thyroid Hormone Receptors beta/analysis , Triiodothyronine/metabolism
20.
Ann N Y Acad Sci ; 1045: 12-33, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15980301

ABSTRACT

Both galaxies and charged particle beams can exhibit collisionless evolution on surprisingly short time scales. This can be attributed to the dynamics of chaotic orbits. The chaos is often triggered by resonance caused by time dependence in the bulk potential, which acts almost identically for attractive gravitational forces and repulsive electrostatic forces. The similarity suggests that many physical processes at work in galaxies, although inaccessible to direct controlled experiments, can be tested indirectly via controlled experiments with charged particle beams, such as those envisioned for the University of Maryland electron ring currently nearing completion.

SELECTION OF CITATIONS
SEARCH DETAIL
...