Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
J Nucl Med ; 65(6): 971-979, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38604759

ABSTRACT

The purpose of this study was to examine a nonparametric approach to mapping kinetic parameters and their uncertainties with data from the emerging generation of dynamic whole-body PET/CT scanners. Methods: Dynamic PET 18F-FDG data from a set of 24 cancer patients studied on a long-axial-field-of-view PET/CT scanner were considered. Kinetics were mapped using a nonparametric residue mapping (NPRM) technique. Uncertainties were evaluated using an image-based bootstrapping methodology. Kinetics and bootstrap-derived uncertainties are reported for voxels, maximum-intensity projections, and volumes of interest (VOIs) corresponding to several key organs and lesions. Comparisons between NPRM and standard 2-compartment (2C) modeling of VOI kinetics are carefully examined. Results: NPRM-generated kinetic maps were of good quality and well aligned with vascular and metabolic 18F-FDG patterns, reasonable for the range of VOIs considered. On a single 3.2-GHz processor, the specification of the bootstrapping model took 140 min; individual bootstrap replicates required 80 min each. VOI time-course data were much more accurately represented, particularly in the early time course, by NPRM than by 2C modeling constructs, and improvements in fit were statistically highly significant. Although 18F-FDG flux values evaluated by NPRM and 2C modeling were generally similar, significant deviations between vascular blood and distribution volume estimates were found. The bootstrap enables the assessment of quite complex summaries of mapped kinetics. This is illustrated with maximum-intensity maps of kinetics and their uncertainties. Conclusion: NPRM kinetics combined with image-domain bootstrapping is practical with large whole-body dynamic 18F-FDG datasets. The information provided by bootstrapping could support more sophisticated uses of PET biomarkers used in clinical decision-making for the individual patient.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Uncertainty , Kinetics , Image Processing, Computer-Assisted , Female , Male , Radiopharmaceuticals/pharmacokinetics , Neoplasms/diagnostic imaging , Neoplasms/metabolism
2.
ACS Chem Biol ; 19(4): 875-885, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38483263

ABSTRACT

It is well established that oxaliplatin, one of the three Pt(II) anticancer drugs approved worldwide, and phenanthriplatin, an important preclinical monofunctional Pt(II) anticancer drug, possess a different mode of action from that of cisplatin and carboplatin, namely, the induction of nucleolar stress. The exact mechanisms that lead to Pt-induced nucleolar stress are, however, still poorly understood. As such, studies aimed at better understanding the biological targets of both oxaliplatin and phenanthriplatin are urgently needed to expand our understanding of Pt-induced nucleolar stress and guide the future design of Pt chemotherapeutics. One approach that has seen great success in the past is the use of Pt-click complexes to study the biological targets of Pt drugs. Herein, we report the synthesis and characterization of the first examples of click-capable phenanthriplatin complexes. Furthermore, through monitoring the relocalization of nucleolar proteins, RNA transcription levels, and DNA damage repair biomarker γH2AX, and by investigating their in vitro cytotoxicity, we show that these complexes successfully mimic the cellular responses observed for phenanthriplatin treatment in the same experiments. The click-capable phenanthriplatin derivatives described here expand the existing library of Pt-click complexes. Significantly they are suitable for studying nucleolar stress mechanisms and further elucidating the biological targets of Pt complexes.


Subject(s)
Antineoplastic Agents , Cell Nucleolus , Organoplatinum Compounds , Phenanthridines , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Cisplatin/pharmacology , Organoplatinum Compounds/chemistry , Organoplatinum Compounds/pharmacology , Oxaliplatin/pharmacology , Phenanthridines/chemical synthesis , Phenanthridines/chemistry , Phenanthridines/pharmacology , Click Chemistry , Cell Nucleolus/drug effects , Cell Nucleolus/metabolism
3.
Cell Signal ; 112: 110931, 2023 12.
Article in English | MEDLINE | ID: mdl-37858614

ABSTRACT

OBJECTIVE: The mitochondrial phenotype, governed by the balance of fusion-fission, is a key determinant of energy metabolism. The inner and outer mitochondrial membrane (IMM) fusion proteins optic atrophy 1 (OPA1) and Mitofusin 1 and 2 (Mfn1/2) play an important role in this process. Recent evidence also shows that Sirtuin 4 (SIRT4), located within the mitochondria, is involved in the regulation of fatty acid oxidation. The purpose of this study was to determine if SIRT4 expression regulates inner and outer mitochondrial-mediated fusion and substrate utilization within differentiated human skeletal muscle cells (HSkMC). MATERIAL AND METHODS: SIRT4 expression was knocked down using small interfering RNA (siRNA) transfection in differentiated HSkMC. Following knockdown, mitochondrial respiration was determined by high-resolution respirometry (HRR) using the Oroboros Oxygraph O2k. Live cell confocal microscopy, quantified using the Mitochondrial Network Analysis (MiNA) toolset, was used to examine mitochondrial morphological change. This was further examined through the measurement of key metabolic and mitochondrial morphological regulators (mRNA and protein) induced by knockdown. RESULTS: SIRT4 knockdown resulted in a significant decrease in LEAK respiration, potentially explained by a decrease in ANT1 protein expression. Knockdown further increased oxidative phosphorylation and protein expression of key regulators of fatty acid metabolism. Quantitative analysis of live confocal imaging of fluorescently labelled mitochondria following SIRT4 knockdown supported the role SIRT4 plays in the regulation of mitochondrial morphology, as emphasized by an increase in mitochondrial network branches and junctions. Measurement of key regulators of mitochondrial dynamics illustrated a significant increase in mitochondrial fusion proteins Mfn1, OPA1 respectively, indicative of an increase in mitochondrial size. CONCLUSIONS: This study provides evidence of a direct relationship between the mitochondrial phenotype and substrate oxidation in HSkMC. We identify SIRT4 as a key protagonist of energy metabolism via its regulation of IMM and OMM fusion proteins, OPA1 and Mfn1. SIRT4 knockdown increases mitochondrial capacity to oxidize fatty acids, decreasing LEAK respiration and further increasing mitochondrial elongation via its regulation of mitochondrial fusion.


Subject(s)
Mitochondrial Membranes , Sirtuins , Humans , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Energy Metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Dynamics , Fatty Acids/metabolism , Sirtuins/metabolism
4.
Phys Med Biol ; 68(8)2023 04 07.
Article in English | MEDLINE | ID: mdl-36944257

ABSTRACT

Objective.Blood pool region of interest (ROI) data extracted from the field of view of a PET scanner can be impacted by both dispersive and background effects. This circumstance compromises the ability to correctly extract the arterial input function (AIF) signal. The paper explores a novel approach to addressing this difficulty.Approach.The method involves representing the AIF in terms of the whole-body impulse response (IR) to the injection profile. Analysis of a collection/population of directly sampled arterial data sets allows the statistical behaviour of the tracer's impulse response to be evaluated. It is proposed that this information be used to develop a penalty term for construction of a data-adaptive method of regularisation estimator of the AIF when dispersive and/or background effects maybe impacting the blood pool ROI data.Main results.Computational efficiency of the approach derives from the linearity of the impulse response representation of the AIF and the ability to substantially rely on quadratic programming techniques for numerical implementation. Data from eight different tracers, used in PET cancer imaging studies, are considered. Sample image-based AIF extractions for brain studies with:18F-labeled fluoro-deoxyglucose and fluoro-thymidine (FLT),11C-labeled carbon dioxide (CO2) and15O-labeled water (H2O) are presented. Results are compared to the true AIF based on direct arterial sampling. Formal numerical simulations are used to evaluate the performance of the AIF extraction method when the ROI data has varying amounts of contamination, in comparison to a direct approach that ignores such effects. It is found that even with quite small amounts of contamination, the mean squared error of the regularised AIF is significantly better than the error associated with direct use of the ROI data.Significance.The proposed IR-based AIF extraction scheme offers a practical methodological approach for situations where the available image ROI data may be contaminated by background and/or dispersion effects.


Subject(s)
Arteries , Brain , Positron-Emission Tomography/methods , Algorithms , Head
5.
Life (Basel) ; 13(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36983764

ABSTRACT

Herein, we describe the global comparison of miRNAs in human pancreatic cancer tumors, adjacent normal tissue, and matched patient-derived xenograft models using microarray screening. RNA was extracted from seven tumor, five adjacent normal, and eight FI PDX tumor samples and analyzed by Affymetrix GeneChip miRNA 4.0 array. A transcriptome analysis console (TAC) was used to generate comparative lists of up- and downregulated miRNAs for the comparisons, tumor vs. normal and F1 PDX vs. tumor. Particular attention was paid to miRNAs that were changed in the same direction in both comparisons. We identified the involvement in pancreatic tumor tissue of several miRNAs, including miR4534, miR3154, and miR4742, not previously highlighted as being involved in this type of cancer. Investigation in the parallel mRNA and protein lists from the same samples allowed the elimination of proteins where altered expression correlated with corresponding mRNA levels and was thus less likely to be miRNA regulated. Using the remaining differential expression protein lists for proteins predicted to be targeted for differentially expressed miRNA on our list, we were able to tentatively ascribe specific protein changes to individual miRNA. Particularly interesting target proteins for miRs 615-3p, 2467-3p, 4742-5p, 509-5p, and 605-3p were identified. Prominent among the protein targets are enzymes involved in aldehyde metabolism and membrane transport and trafficking. These results may help to uncover vulnerabilities that could enable novel approaches to treating pancreatic cancer.

6.
Front Med (Lausanne) ; 9: 974212, 2022.
Article in English | MEDLINE | ID: mdl-36457571

ABSTRACT

The ocular surface is composed of two phenotypically and functionally different epithelial cell types: corneal and the conjunctival epithelium. Upon injury or disease, ocular surface homeostasis is impaired resulting in migration of conjunctival epithelium on to the corneal surface. This can lead to incomplete transdifferentiation toward corneal epithelial-like cells in response to corneal basement membrane cues. We show that corneal extracellular matrix (ECM) proteins induce conjunctival epithelial cells to express corneal associated markers losing their conjunctival associated phenotype at both, mRNA and protein level. Corneal epithelial cells behave the same in the presence of conjunctival ECM proteins, expressing markers associated with conjunctival epithelium. This process of differentiation is accompanied by an intermediate step of cell de-differentiation as an up-regulation in the expression of epithelial stem cell markers is observed. In addition, analysis of ECM proteins by laminin screening assays showed that epithelial cell response is laminin-type dependent, and cells cultured on laminin-511 showed lower levels of lineage commitment. The phosphorylation and proteolysis levels of proteins mainly involved in cell growth and differentiation showed lower modifications in cells with lower lineage commitment. These observations showed that the ECM proteins may serve as tools to induce cell differentiation, which may have potential applications for the treatment of ocular surface injuries.

7.
AAPS J ; 24(6): 108, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229752

ABSTRACT

The multi-drug combination regime, FOLFIRINOX, is a standard of care chemotherapeutic therapy for pancreatic cancer patients. However, systematic evaluation of potential pharmacodynamic interactions among multi-drug therapy has not been reported previously. Here, pharmacodynamic interactions of the FOLFIRINOX agents (5-fluorouracil (5-FU), oxaliplatin (Oxa) and SN-38, the active metabolite of irinotecan) were assessed across a panel of primary and established pancreatic cancer cells. Inhibition of cell proliferation was quantified for each drug, alone and in combination, to obtain quantitative, drug-specific interaction parameters and assess the nature of drug interactions. The experimental data were analysed assuming Bliss independent interactions, and nonlinear regression model fitting was conducted in SAS. Estimates of the drug interaction term, psi (ψ), revealed that the Oxa/SN-38 combination appeared synergistic in PANC-1 (ψ = 0.6, 95% CI = 0.4, 0.9) and modestly synergistic, close to additive, in MIAPaCa-2 (ψ = 0.8, 95% CI = 0.6, 1.0) in 2D assays. The triple combination was strongly synergistic in MIAPaCa-2 (ψ = 0.2, 95% CI = 0.1, 0.3) and modestly synergistic/borderline additive in PANC-1 2D (ψ = 0.8, 95% CI = 0.6, 1.0). The triple combination showed antagonistic interactions in the primary PIN-127 and 3D PANC-1 model (ψ > 1). Quantitative pharmacodynamic interactions have not been described for the FOLFIRINOX regimen; this analysis suggests a complex interplay among the three chemotherapeutic agents. Extension of this pharmacodynamic analysis approach to clinical/translational studies of the FOLFIRINOX combination could reveal additional pharmacodynamic interactions and guide further refinement of this regimen to achieve optimal clinical responses.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Culture Techniques , Drug Combinations , Fluorouracil/pharmacology , Humans , Irinotecan/pharmacology , Leucovorin , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms
8.
J Med Imaging (Bellingham) ; 9(4): 045003, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35915767

ABSTRACT

Purpose: Radiomics have become invaluable for non-invasive cancer patient risk prediction, and the community now turns to exogenous assessment, e.g., from genomics, for interpretability of these agnostic analyses. Yet, some opportunities for clinically interpretable modeling of positron emission tomography (PET) imaging data remain unexplored, that could facilitate insightful characterization at voxel level. Approach: Here, we present a novel deformable tubular representation of the distribution of tracer uptake within a volume of interest, and derive interpretable prognostic summaries from it. This data-adaptive strategy yields a 3D-coherent and smooth model fit, and a profile curve describing tracer uptake as a function of voxel location within the volume. Local trends in uptake rates are assessed at each voxel via the calculation of gradients derived from this curve. Intratumoral heterogeneity can also be assessed directly from it. Results: We illustrate the added value of this approach over previous strategies, in terms of volume rendering and coherence of the structural representation of the data. We further demonstrate consistency of the implementation via simulations, and prognostic potential of heterogeneity and statistical summaries of the uptake gradients derived from the model on a clinical cohort of 158 sarcoma patients imaged with F 18 -fluorodeoxyglucose-PET, in multivariate prognostic models of patient survival. Conclusions: The proposed approach captures uptake characteristics consistently at any location, and yields a description of variations in uptake that holds prognostic value complementarily to structural heterogeneity. This creates opportunities for monitoring of local areas of greater interest within a tumor, e.g., to assess therapeutic response in avid locations.

9.
Pharmaceutics ; 14(5)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35631485

ABSTRACT

Drug-mediated correction of abnormal biological zinc homeostasis could provide new routes to treating neurodegeneration, cancer, and viral infections. Designing therapeutics to facilitate zinc transport intracellularly is hampered by inadequate concentrations of endogenous zinc, which is often protein-bound in vivo. We found strong evidence that hydroxychloroquine, a drug used to treat malaria and employed as a potential treatment for COVID-19, does not bind and transport zinc across biological membranes through ionophoric mechanisms, contrary to recent claims. In vitro complexation studies and liposomal transport assays are correlated with cellular zinc assays in A549 lung epithelial cells to confirm the indirect mechanism of hydroxychloroquine-mediated elevation in intracellular zinc without ionophorism. Molecular simulations show hydroxychloroquine-triggered helix perturbation in zinc-finger protein without zinc chelation, a potential alternative non-ionophoric mechanism.

10.
Pharmaceutics ; 13(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34959313

ABSTRACT

The importance of zinc in biology has gained greater recognition in recent years due to its essential contributions to the function of many endogenous enzymes. Disruption of zinc homeostasis may be useful in treating pathological conditions, such as Alzheimer's, and for antiviral purposes. Despite the growth of knowledge and increased interest in zinc, little is known about the structure and function of zinc ionophores. In this study we analyse the Cambridge Structural Database and solution complexation studies found in the literature to identify key functional groups which may confer zinc ionophorism. Pharmaceuticals, nutraceuticals and amino acids with these functionalities were selected to enable us to explore the translatability of ionophoric activity from in vitro assays to cellular systems. We find that although certain species may complex to zinc in the solid and solution states, and may carry ions across simple membrane systems, this does not necessarily translate into ionophoric activity. We propose that the CSD can help refine key functionalities but that ionophoric activity must be confirmed in cellular systems.

11.
Med Image Anal ; 72: 102132, 2021 08.
Article in English | MEDLINE | ID: mdl-34186431

ABSTRACT

PET imaging is an important diagnostic tool for management of patients with cancer and other diseases. Medical decisions based on quantitative PET information could potentially benefit from the availability of tools for evaluation of associated uncertainties. Raw PET data can be viewed as a sample from an inhomogeneous Poisson process so there is the possibility to directly apply bootstrapping to raw projection-domain list-mode data. Unfortunately this is computationally impractical, particularly if data reconstruction is iterative or the acquisition protocol is dynamic. We develop a flexible statistical linear model analysis to be used with multi-frame PET image data to create valid bootstrap samples. The technique is illustrated using data from dynamic PET studies with fluoro-deoxyglucose (FDG) and fluoro-thymidine (FLT) in brain and breast cancer patients. As is often the case with dynamic PET studies, data have been archived without raw list-mode information. Using the bootstrapping technique maps of kinetic parameters and associated uncertainties are obtained. The quantitative performance of the approach is assessed by simulation. The proposed image-domain bootstrap is found to substantially match the projection-domain alternative. Analysis of results points to a close relation between relative uncertainty in voxel-level kinetic parameters and local reconstruction error. This is consistent with statistical theory.


Subject(s)
Algorithms , Positron-Emission Tomography , Brain/diagnostic imaging , Computer Simulation , Humans , Image Processing, Computer-Assisted , Linear Models
12.
Phys Med Biol ; 66(13)2021 07 01.
Article in English | MEDLINE | ID: mdl-34049293

ABSTRACT

Multiple injection dynamic positron emission tomography (PET) scanning is used in the clinical management of certain groups of patients and in medical research. The analysis of these studies can be approached in two ways: (i) separate analysis of data from individual tracer injections, or (ii), concatenate/pool data from separate injections and carry out a combined analysis. The simplicity of separate analysis has some practical appeal but may not be statistically efficient. We use a linear model framework associated with a kinetic mapping scheme to develop a simplified theoretical understanding of separate and combined analysis. The theoretical framework is explored numerically using both 1D and 2D simulation models. These studies are motivated by the breast cancer flow-metabolism mismatch studies involving15O-water (H2O) and18F-Fluorodeoxyglucose (FDG) and repeat15O-H2O injections used in brain activation investigations. Numerical results are found to be substantially in line with the simple theoretical analysis: mean square error characteristics of alternative methods are well described by factors involving the local voxel-level resolution of the imaging data, the relative activities of the individual scans and the number of separate injections involved. While voxel-level resolution has dependence on scan dose, after adjustment for this effect, the impact of a combined analysis is understood in simple terms associated with the linear model used for kinetic mapping. This is true for both data reconstructed by direct filtered backprojection or iterative maximum likelihood. The proposed analysis has potential to be applied to the emerging long axial field-of-view PET scanners.


Subject(s)
Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Fluorodeoxyglucose F18 , Humans , Kinetics , Positron-Emission Tomography
13.
Tomography ; 7(2): 139-153, 2021 04 25.
Article in English | MEDLINE | ID: mdl-33923126

ABSTRACT

ACRIN 6687, a multi-center clinical trial evaluating differential response of bone metastases to dasatinib in men with metastatic castration-resistant prostate cancer (mCRPC), used [18F]-fluoride (NaF) PET imaging. We extend previous ACRIN 6687 dynamic imaging results by examining NaF whole-body (WB) static SUV PET scans acquired after dynamic scanning. Eighteen patients underwent WB NaF imaging prior to and 12 weeks into dasatinib treatment. Regional VOI analysis of the most NaF avid bone metastases and an automated whole-body method using Quantitative Total Bone Imaging software (QTBI; AIQ Solutions, Inc., Madison, WI, USA) were used. We assessed differences in tumor and normal bone, between pre- and on-treatment dasatinib, and evaluated parameters in association with PFS and OS. Significant decrease in average SUVmax and average SUVpeak occurred in response to dasatinib. Univariate and multivariate analysis showed NaF uptake had significant association with PFS. Pharmacodynamic changes with dasatinib in tumor bone can be identified by WB NaF PET in men with mCRPC. WB PET has the benefit of examining the entire body and is less complicated than single FOV dynamic imaging.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Dasatinib/therapeutic use , Fluorides , Fluorine Radioisotopes , Humans , Male , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Prostatic Neoplasms, Castration-Resistant/diagnostic imaging , Prostatic Neoplasms, Castration-Resistant/drug therapy , Sodium Fluoride , Tomography, X-Ray Computed
14.
In Vitro Cell Dev Biol Anim ; 57(3): 359-371, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33559028

ABSTRACT

We previously described a non-monotonic dose response curve at low copper concentrations where 3.125 µM CuSO4 (the early inflection point) was more toxic than 25 µM CuSO4 in Caco-2 cells. We employed global proteomics to investigate this observation. The altered expression levels of a small number of proteins displaying a temporal response may provide the best indication of the underlying mechanism; more well-known copper response proteins including the metal binding metallothioneins (MT1X, MT1F, MT2A) and antioxidant response proteins including Heme oxygenase were upregulated to a similar level in both copper concentrations and so are less likely to underpin this phenomenon.The temporal response proteins include Granulins, AN1-type zinc finger protein 2A (ZFAND2A), and the heat shock proteins (HSPA6 and HSPA1B). Granulins were decreased after 4 h only in 25 µM CuSO4 but from 24 h, were decreased in both copper concentrations to a similar level. Induction of ZFAND2A and increases in HSPA6 and HSPA1B were observed at 24 h only in 25 µM CuSO4 but were present at 48 h in both copper conditions. The early expression of ZFAND2A, HSPs, and higher levels of α-crystallin B (CRYAB) correlated with lower levels of misfolded proteins in 25 µM CuSO4 compared to 3.125 µM CuSO4 at 48 h. These results suggest that 3.125 µM CuSO4 at early time points was unable to activate the plethora of stress responses invoked by the higher copper concentration, paradoxically exposing the Caco-2 cells to higher levels of misfolded proteins and greater proteotoxic stress.


Subject(s)
Copper/toxicity , Intestines/pathology , Caco-2 Cells , Cell Count , Cell Survival/drug effects , Glutathione/metabolism , Humans , Protein Unfolding/drug effects , Proteomics , Reproducibility of Results , Time Factors
15.
Acta Ophthalmol ; 99(4): e512-e522, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32914525

ABSTRACT

PURPOSE: To investigate the effect of culturing human corneal endothelial cells (HCEnCs) from older donors on extracellular matrix (ECM) derived from human corneal endothelial cell line (HCEC-12). METHODS: HCEC-12 cells were cultured on lab-tek chamber slides for 9 days. Upon confluence, the cells were ruptured using ammonium hydroxide leaving the released ECM on the slide surface which was visualized using scanning electron microscope (SEM). HCEnCs from old aged donor tissues (n = 40) were isolated and cultured on either fibronectin-collagen (FNC) or HCEC-12 ECM at passage (P) 0. At subsequent passages (P1 and P2), cells were sub-cultured on FNC and ECM separately. Live/dead analysis and tight junction using ZO-1 staining were used to record percentage viability and morphological changes. The protein composition of HCEC-12 ECM was then analysed using liquid chromatography-mass spectrometry. RESULTS: SEM images showed long fibrillar-like structures and a fully laid ECM upon confluence. HCEnCs cultured from older donor tissues on this ECM showed significantly better proliferation and morphometric characteristics at subsequent passages. Out of 1307 proteins found from the HCEC-12 derived ECM, 93 proteins were evaluated to be matrix oriented out of which 20 proteins were exclusively found to be corneal endothelial specific. CONCLUSIONS: ECM derived from HCEC-12 retains protein and growth factors that stimulate the growth of HCEnCs. As the current clinical trials are from younger donors that are not available routinely for cell culture, HCEnCs from older donors can be cultured on whole ECM and passaged successfully.


Subject(s)
Corneal Transplantation/methods , Endothelium, Corneal/transplantation , Extracellular Matrix/ultrastructure , Tissue Donors , Aged , Cell Count , Cell Line , Endothelium, Corneal/ultrastructure , Humans , Microscopy, Electron, Scanning , Middle Aged
16.
Metallomics ; 12(10): 1521-1529, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32760989

ABSTRACT

The Caco-2 cell line is composed of a heterogeneous mix of cells; isolation of individual clonal populations from this mix allows for specific mechanisms and phenotypes to be further explored. Previously we exposed Caco-2 cells to inorganic copper sulphate or organic copper proteinate to generate resistant variant populations. Here we describe the isolation and characterisation of clonal subpopulations from these resistant variants to organic (clone Or1, Or2, Or3) or inorganic (clone In1 and In2) copper. The clones show considerable homogeneity in response to Cu-induced toxicity and heterogeneity in morphology with variations in level of cross-resistance to other metals and doxorubicin. Population growth was reduced for Cu-resistant clones In2 and Or3 in selective pressure relative to parental Caco-2 cells. Gene expression analysis identified 4026 total (2102 unique and 1924 shared) differentially expressed genes including those involved in the MAP Kinase and Rap1 signalling pathways, and in the focal adhesion and ECM-receptor contact pathways. Gene expression changes common to all clones included upregulation of ANXA13 and GPx2. Our analysis additionally identified differential expression of multiple genes specific to copper proteinate exposure (including overexpressed UPK1B) in isolated clones Or1, Or2 and Or3 and CuSO4 exposure (including decreased AIFM2 expression) in isolated clones In1 and In2. The adaptive transcriptional responses established in this study indicate a cohort of genes, which may be involved in copper resistance regulation and chronic copper exposure.


Subject(s)
Copper/metabolism , Epithelial Cells/metabolism , Transcriptome , Caco-2 Cells , Copper/toxicity , Copper Sulfate/metabolism , Copper Sulfate/toxicity , Epithelial Cells/cytology , Epithelial Cells/drug effects , Gene Expression Profiling , Humans , Transcriptome/drug effects
17.
Methods Mol Biol ; 2145: 29-37, 2020.
Article in English | MEDLINE | ID: mdl-32542598

ABSTRACT

The cultivation of corneal-limbal cells in vitro represents an excellent means to generate models to study cornea function and disease processes. These in vitro expanded cornea-limbal epithelial cell cultures are rich in stem cells for cornea, and hence can be used as a cell therapy for cornea-limbal deficiency. This chapter details the primary culture of these cornea-limbal cells, which can be used as model for further studies of the cornea surface.


Subject(s)
Cell Culture Techniques/methods , Cornea/growth & development , Epithelium, Corneal/cytology , Limbus Corneae/cytology , Amnion/growth & development , Epithelium, Corneal/growth & development , Humans , Limbus Corneae/growth & development
18.
Tomography ; 6(1): 14-22, 2020 03.
Article in English | MEDLINE | ID: mdl-32280746

ABSTRACT

Hypoxia is associated with resistance to radiotherapy and chemotherapy in malignant gliomas, and it can be imaged by positron emission tomography with 18F-fluoromisonidazole (18F-FMISO). Previous results for patients with brain cancer imaged with 18F-FMISO at a single center before conventional chemoradiotherapy showed that tumor uptake via T/Bmax (tissue SUVmax/blood SUV) and hypoxic volume (HV) was associated with poor survival. However, in a multicenter clinical trial (ACRIN 6684), traditional uptake parameters were not found to be prognostically significant, but tumor SUVpeak did predict survival at 1 year. The present analysis considered both study cohorts to reconcile key differences and examine the potential utility of adding radiomic features as prognostic variables for outcome prediction on the combined cohort of 72 patients with brain cancer (30 University of Washington and 42 ACRIN 6684). We used both 18F-FMISO intensity metrics (T/Bmax, HV, SUV, SUVmax, SUVpeak) and assessed radiomic measures that determined first-order (histogram), second-order, and higher-order radiomic features of 18F-FMISO uptake distributions. A multivariate model was developed that included age, HV, and the intensity of 18F-FMISO uptake. HV and SUVpeak were both independent predictors of outcome for the combined data set (P < .001) and were also found significant in multivariate prognostic models (P < .002 and P < .001, respectively). Further model selection that included radiomic features showed the additional prognostic value for overall survival of specific higher order texture features, leading to an increase in relative risk prediction performance by a further 5%, when added to the multivariate clinical model..


Subject(s)
Brain Neoplasms/diagnostic imaging , Fluorodeoxyglucose F18/pharmacokinetics , Misonidazole/analogs & derivatives , Positron-Emission Tomography/methods , Radiopharmaceuticals/administration & dosage , Soft Tissue Neoplasms/metabolism , Adult , Aged , Female , Humans , Hypoxia/diagnostic imaging , Male , Middle Aged , Misonidazole/administration & dosage , Prognosis , Radiopharmaceuticals/pharmacokinetics , Soft Tissue Neoplasms/pathology
19.
Biochem Biophys Res Commun ; 524(4): 847-852, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32046857

ABSTRACT

Homeostasis of metal micronutrients such as copper is tightly regulated to ensure deficiency does not occur while restricting damage resulting from excess accumulation. Using LC-MS the effect on the proteome of intestinal Caco-2 cells of exposure to the chelator triethylenetetramine (TETA) was investigated. Continuous exposure of TETA at 25 µM to Caco-2 cells caused decreased cell yields and morphological changes. These effects were reversed when cells were no longer exposed to TETA. Quantitative proteomic analysis identified 957 mostly low-fold differentially expressed proteins, 41 of these returned towards control Caco-2 expression following recovery. Proteins exhibiting this "reciprocal" behaviour included upregulated deoxyhypusine hydroxylase (DOHH, 15.69- fold), a protein essential for eIF-5A factor hypsuination, a post translational modification responsible for eIF-5A maturation, which in turn is responsible for translation elongation. Exposure to TETA also resulted in 87 proteins, the expression of which was stable and remained differentially expressed following recovery. This study helps to elucidate the stable and transient proteomic effects of TETA exposure in intestinal cells.


Subject(s)
Chelating Agents/pharmacology , Computational Biology/methods , Copper/metabolism , Trientine/pharmacology , Caco-2 Cells , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Humans , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Annotation , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Eukaryotic Translation Initiation Factor 5A
20.
Toxicol In Vitro ; 65: 104773, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31981602

ABSTRACT

Studies in hepatic systems identify multiple factors involved in the generation of copper resistance. As the intestine is the route of exposure to dietary copper, we wanted to understand how intestinal cells overcome the toxic effects of high copper and what mechanisms of resistance develop. Using the intestinal cell line Caco-2, resistance was developed by serial subculture in 50 µM copper in inorganic (CuSO4) or organic (Cu proteinate) forms. Caco-2 variants exhibited resistance to copper and retained the non-monotonic dose response while displaying stable phenotypes following repeated subculture in the absence of copper. Phenotypic changes on exposure to copper in parental Caco-2 cells included significantly increased total protein yield, ROS, SOD, metallothionein expression, GSH and total glutathione. These phenotypic changes were not replicated in resistant variants on a per cell basis. Quantitative label-free LC-MS/MS proteomic analysis identified 1113 differentially expressed proteins (DEPs) between parental Caco-2 and resistant cells. With some exceptions, most of the DEPs were overexpressed to a low level around 2-fold suggesting resistance was supported by multiple small changes in protein expression. These variants may be a useful tool in studying the toxicity of stress responses in further Cu-related studies.


Subject(s)
Copper/toxicity , Proteome/drug effects , Caco-2 Cells , Cell Survival/drug effects , Drug Tolerance , Glutathione/metabolism , Humans , Proteomics , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...