Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Biol Open ; 13(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39078271

ABSTRACT

Although some budding yeasts have proved tractable and intensely studied models, others are more recalcitrant. Debaryomyces hansenii, an important yeast species in food and biotechnological industries with curious physiological characteristics, has proved difficult to manipulate genetically and remains poorly defined. To remedy this, we have combined live cell fluorescent dyes with high-resolution imaging techniques to define the sub-cellular features of D. hansenii, such as the mitochondria, nuclei, vacuoles and the cell wall. Using these tools, we define biological processes like the cell cycle, organelle inheritance and various membrane trafficking pathways of D. hansenii for the first time. Beyond this, reagents designed to study Saccharomyces cerevisiae proteins were used to access proteomic information about D. hansenii. Finally, we optimised the use of label-free holotomography to image yeast, defining the physical parameters and visualising sub-cellular features like membranes and vacuoles. Not only does this work shed light on D. hansenii but this combinatorial approach serves as a template for how other cell biological systems, which are not amenable to standard genetic procedures, can be studied.


Subject(s)
Debaryomyces , Proteomics/methods , Vacuoles/ultrastructure , Vacuoles/metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Saccharomyces cerevisiae/ultrastructure
2.
J Microsc ; 294(3): 420-439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747464

ABSTRACT

In September 2023, the two largest bioimaging networks in the Americas, Latin America Bioimaging (LABI) and BioImaging North America (BINA), came together during a 1-week meeting in Mexico. This meeting provided opportunities for participants to interact closely with decision-makers from imaging core facilities across the Americas. The meeting was held in a hybrid format and attended in-person by imaging scientists from across the Americas, including Canada, the United States, Mexico, Colombia, Peru, Argentina, Chile, Brazil and Uruguay. The aims of the meeting were to discuss progress achieved over the past year, to foster networking and collaborative efforts among members of both communities, to bring together key members of the international imaging community to promote the exchange of experience and expertise, to engage with industry partners, and to establish future directions within each individual network, as well as common goals. This meeting report summarises the discussions exchanged, the achievements shared, and the goals set during the LABIxBINA2023: Bioimaging across the Americas meeting.

3.
J Microsc ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973413

ABSTRACT

Here we outline a vignette of the Bioscience Technology Facility (BTF) at the University of York as a singular exemplar of the Full Cost Recovery model. It is fully appreciated that every facility operates slightly differently, and each are subject to various rules at the institutional, regional and national level. Understanding the regulations that need to be followed for your cost recovery model may require discussion with your administrators to ensure compliance regulations for your Institution and governing bodies are followed. The below is almost a pick and mix of ways of working. It is, however, one of the few examples that is able to fully recover its operating costs within an academic environment and has sought and obtained full institutional and funders support. This model is now being much more widely adopted across the United Kingdom although again always with slightly different interpretations.

4.
Nat Commun ; 14(1): 1854, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37012230

ABSTRACT

With phenotypic heterogeneity in whole cell populations widely recognised, the demand for quantitative and temporal analysis approaches to characterise single cell morphology and dynamics has increased. We present CellPhe, a pattern recognition toolkit for the unbiased characterisation of cellular phenotypes within time-lapse videos. CellPhe imports tracking information from multiple segmentation and tracking algorithms to provide automated cell phenotyping from different imaging modalities, including fluorescence. To maximise data quality for downstream analysis, our toolkit includes automated recognition and removal of erroneous cell boundaries induced by inaccurate tracking and segmentation. We provide an extensive list of features extracted from individual cell time series, with custom feature selection to identify variables that provide greatest discrimination for the analysis in question. Using ensemble classification for accurate prediction of cellular phenotype and clustering algorithms for the characterisation of heterogeneous subsets, we validate and prove adaptability using different cell types and experimental conditions.


Subject(s)
Algorithms , Cell Tracking , Time-Lapse Imaging , Cell Tracking/methods
5.
Front Immunol ; 13: 862104, 2022.
Article in English | MEDLINE | ID: mdl-36003389

ABSTRACT

Introduction: Spatial analysis of lipids in inflammatory microenvironments is key to understand the pathogenesis of infectious disease. Granulomatous inflammation is a hallmark of leishmaniasis and changes in host and parasite lipid metabolism have been observed at the bulk tissue level in various infection models. Here, mass spectrometry imaging (MSI) is applied to spatially map hepatic lipid composition following infection with Leishmania donovani, an experimental mouse model of visceral leishmaniasis. Methods: Livers from naïve and L. donovani-infected C57BL/6 mice were harvested at 14- and 20-days post-infection (n=5 per time point). 12 µm transverse sections were cut and covered with norhamane, prior to lipid analysis using MALDI-MSI. MALDI-MSI was performed in negative mode on a Rapiflex (Bruker Daltonics) at 5 and 50 µm spatial resolution and data-dependent analysis (DDA) on an Orbitrap-Elite (Thermo-Scientific) at 50 µm spatial resolution for structural identification analysis of lipids. Results: Aberrant lipid abundances were observed in a heterogeneous distribution across infected mouse livers compared to naïve mouse liver. Distinctive localized correlated lipid masses were found in granulomas and surrounding parenchymal tissue. Structural identification revealed 40 different lipids common to naïve and d14/d20 infected mouse livers, whereas 15 identified lipids were only detected in infected mouse livers. For pathology-guided MSI imaging, we deduced lipids from manually annotated granulomatous and parenchyma regions of interests (ROIs), identifying 34 lipids that showed significantly different intensities between parenchyma and granulomas across all infected livers. Discussion: Our results identify specific lipids that spatially correlate to the major histopathological feature of Leishmania donovani infection in the liver, viz. hepatic granulomas. In addition, we identified a three-fold increase in the number of unique phosphatidylglycerols (PGs) in infected liver tissue and provide direct evidence that arachidonic acid-containing phospholipids are localized with hepatic granulomas. These phospholipids may serve as important precursors for downstream oxylipin generation with consequences for the regulation of the inflammatory cascade. This study provides the first description of the use of MSI to define spatial-temporal lipid changes at local sites of infection induced by Leishmania donovani in mice.


Subject(s)
Leishmania donovani , Animals , Arachidonic Acid/metabolism , Granuloma/pathology , Leishmania donovani/physiology , Liver/pathology , Mice , Mice, Inbred C57BL , Phospholipids/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
6.
J Digit Imaging ; 35(4): 817-833, 2022 08.
Article in English | MEDLINE | ID: mdl-35962150

ABSTRACT

Despite technological advances in the analysis of digital images for medical consultations, many health information systems lack the ability to correlate textual descriptions of image findings linked to the actual images. Images and reports often reside in separate silos in the medical record throughout the process of image viewing, report authoring, and report consumption. Forward-thinking centers and early adopters have created interactive reports with multimedia elements and embedded hyperlinks in reports that connect the narrative text with the related source images and measurements. Most of these solutions rely on proprietary single-vendor systems for viewing and reporting in the absence of any encompassing industry standards to facilitate interoperability with the electronic health record (EHR) and other systems. International standards have enabled the digitization of image acquisition, storage, viewing, and structured reporting. These provide the foundation to discuss enhanced reporting. Lessons learned in the digital transformation of radiology and pathology can serve as a basis for interactive multimedia reporting (IMR) across image-centric medical specialties. This paper describes the standard-based infrastructure and communications to fulfill recently defined clinical requirements through a consensus from an international workgroup of multidisciplinary medical specialists, informaticists, and industry participants. These efforts have led toward the development of an Integrating the Healthcare Enterprise (IHE) profile that will serve as a foundation for interoperable interactive multimedia reporting.


Subject(s)
Medicine , Radiology Information Systems , Communication , Diagnostic Imaging , Electronic Health Records , Humans , Multimedia
7.
Mol Biol Cell ; 33(4): ar31, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35080991

ABSTRACT

Cell surface protein trafficking is regulated in response to nutrient availability, with multiple pathways directing surface membrane proteins to the lysosome for degradation in response to suboptimal extracellular nutrients. Internalized protein and lipid cargoes recycle back to the surface efficiently in glucose-replete conditions, but this trafficking is attenuated following glucose starvation. We find that cells with either reduced or hyperactive phosphatidylinositol 3-kinase (PI3K) activity are defective for endosome to surface recycling. Furthermore, we find that the yeast Gα subunit Gpa1, an endosomal PI3K effector, is required for surface recycling of cargoes. Following glucose starvation, mRNA and protein levels of a distinct Gα subunit Gpa2 are elevated following nuclear translocation of Mig1, which inhibits recycling of various cargoes. As Gpa1 and Gpa2 interact at the surface where Gpa2 concentrates during glucose starvation, we propose that this disrupts PI3K activity required for recycling, potentially diverting Gpa1 to the surface and interfering with its endosomal role in recycling. In support of this model, glucose starvation and overexpression of Gpa2 alter PI3K endosomal phosphoinositide production. Glucose deprivation therefore triggers a survival mechanism to increase retention of surface cargoes in endosomes and promote their lysosomal degradation.


Subject(s)
Phosphatidylinositol 3-Kinase , Saccharomyces cerevisiae Proteins , Endosomes/metabolism , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , Glucose/metabolism , Membrane Proteins/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
8.
Neuro Oncol ; 24(4): 541-553, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34543427

ABSTRACT

BACKGROUND: Microtubes (MTs), cytoplasmic extensions of glioma cells, are important cell communication structures promoting invasion and treatment resistance through network formation. MTs are abundant in chemoresistant gliomas, in particular, glioblastomas (GBMs), while they are uncommon in chemosensitive IDH-mutant and 1p/19q co-deleted oligodendrogliomas. The aim of this study was to identify potential signaling pathways involved in MT formation. METHODS: Bioinformatics analysis of TCGA was performed to analyze differences between GBM and oligodendroglioma. Patient-derived GBM stem cell lines were used to investigate MT formation under transforming growth factor-beta (TGF-ß) stimulation and inhibition in vitro and in vivo in an orthotopic xenograft model. RNA sequencing and proteomics were performed to detect commonalities and differences between GBM cell lines stimulated with TGF-ß. RESULTS: Analysis of TCGA data showed that the TGF-ß pathway is highly activated in GBMs compared to oligodendroglial tumors. We demonstrated that TGF-ß1 stimulation of GBM cell lines promotes enhanced MT formation and communication via calcium signaling. Inhibition of the TGF-ß pathway significantly reduced MT formation and its associated invasion in vitro and in vivo. Downstream of TGF-ß, we identified thrombospondin 1 (TSP1) as a potential mediator of MT formation in GBM through SMAD activation. TSP1 was upregulated upon TGF-ß stimulation and enhanced MT formation, which was inhibited by TSP1 shRNAs in vitro and in vivo. CONCLUSION: TGF-ß and its downstream mediator TSP1 are important mediators of the MT network in GBM and blocking this pathway could potentially help to break the complex MT-driven invasion/resistance network.


Subject(s)
Glioblastoma , Glioma , Oligodendroglioma , Glioblastoma/pathology , Humans , Thrombospondin 1/genetics , Thrombospondin 1/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
9.
Front Microbiol ; 12: 709728, 2021.
Article in English | MEDLINE | ID: mdl-34489899

ABSTRACT

Infectious diseases, including those of viral, bacterial, fungal, and parasitic origin are often characterized by focal inflammation occurring in one or more distinct tissues. Tissue-specific outcomes of infection are also evident in many infectious diseases, suggesting that the local microenvironment may instruct complex and diverse innate and adaptive cellular responses resulting in locally distinct molecular signatures. In turn, these molecular signatures may both drive and be responsive to local metabolic changes in immune as well as non-immune cells, ultimately shaping the outcome of infection. Given the spatial complexity of immune and inflammatory responses during infection, it is evident that understanding the spatial organization of transcripts, proteins, lipids, and metabolites is pivotal to delineating the underlying regulation of local immunity. Molecular imaging techniques like mass spectrometry imaging and spatially resolved, highly multiplexed immunohistochemistry and transcriptomics can define detailed metabolic signatures at the microenvironmental level. Moreover, a successful complementation of these two imaging techniques would allow multi-omics analyses of inflammatory microenvironments to facilitate understanding of disease pathogenesis and identify novel targets for therapeutic intervention. Here, we describe strategies for downstream data analysis of spatially resolved multi-omics data and, using leishmaniasis as an exemplar, describe how such analysis can be applied in a disease-specific context.

10.
J Pers Med ; 11(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917320

ABSTRACT

Peroxisomal matrix proteins are transported into peroxisomes in a fully-folded state, but whether multimeric proteins are imported as monomers or oligomers is still disputed. Here, we used alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal 5'-phosphate (PLP)-dependent enzyme, whose deficit causes primary hyperoxaluria type I (PH1), as a model protein and compared the intracellular behavior and peroxisomal import of native dimeric and artificial monomeric forms. Monomerization strongly reduces AGT intracellular stability and increases its aggregation/degradation propensity. In addition, monomers are partly retained in the cytosol. To assess possible differences in import kinetics, we engineered AGT to allow binding of a membrane-permeable dye and followed its intracellular trafficking without interfering with its biochemical properties. By fluorescence recovery after photobleaching, we measured the import rate in live cells. Dimeric and monomeric AGT displayed a similar import rate, suggesting that the oligomeric state per se does not influence import kinetics. However, when dimerization is compromised, monomers are prone to misfolding events that can prevent peroxisomal import, a finding crucial to predicting the consequences of PH1-causing mutations that destabilize the dimer. Treatment with pyridoxine of cells expressing monomeric AGT promotes dimerization and folding, thus, demonstrating the chaperone role of PLP. Our data support a model in which dimerization represents a potential key checkpoint in the cytosol at the crossroad between misfolding and correct targeting, a possible general mechanism for other oligomeric peroxisomal proteins.

11.
Front Physiol ; 11: 568087, 2020.
Article in English | MEDLINE | ID: mdl-33041864

ABSTRACT

Platelets are specialized anucleate cells that play a major role in hemostasis following vessel injury. More recently, platelets have also been implicated in innate immunity and inflammation by directly interacting with immune cells and releasing proinflammatory signals. It is likely therefore that in certain pathologies, such as chronic parasitic infections and myeloid malignancies, platelets can act as mediators for hemostatic and proinflammatory responses. Fortunately, murine platelet function ex vivo is highly analogous to human, providing a robust model for functional comparison. However, traditional methods of studying platelet phenotype, function and activation status often rely on using large numbers of whole isolated platelet populations, which severely limits the number and type of assays that can be performed with mouse blood. Here, using cutting edge 3D quantitative phase imaging, holotomography, that uses optical diffraction tomography (ODT), we were able to identify and quantify differences in single unlabeled, live platelets with minimal experimental interference. We analyzed platelets directly isolated from whole blood of mice with either a JAK2V617F-positive myeloproliferative neoplasm (MPN) or Leishmania donovani infection. Image analysis of the platelets indicates previously uncharacterized differences in platelet morphology, including altered cell volume and sphericity, as well as changes in biophysical parameters such as refractive index (RI) and dry mass. Together, these data indicate that, by using holotomography, we were able to identify clear disparities in activation status and potential functional ability in disease states compared to control at the level of single platelets.

12.
Dalton Trans ; 49(43): 15219-15230, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33021299

ABSTRACT

We report cytotoxic ruthenium(ii) complexes of the general formula [RuCl(cis-tach)(diphosphine)]+ (cis-tach = cis-cis-1,3,5-triaminocyclohexane) that have been characterised by 1H, 13C and 31P{1H} NMR spectroscopy, mass spectrometry, X-ray crystallography and elemental analysis. The kinetics of aquation and stability of the active species have been studied, showing that the chlorido ligand is substituted by water at 298 K with first order rate constants of 10-2-10-3 s-1, ideal for potential clinical use as anti-tumour agents. Strong interactions with biologically relevant duplex and quadruplex DNA models correlate with the activity observed with A549, A2780 and 293T cell lines, and the degree of activity was found to be sensitive to the chelating diphosphine ligand. A label-free ptychographic cell imaging technique recorded cell death processes over 4 days. The Ru(ii) cis-tach diphosphine complexes exhibit anti-proliferative effects, in some cases outperforming cisplatin and other cytotoxic ruthenium complexes.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , DNA/metabolism , Phosphines/chemistry , Ruthenium/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Coordination Complexes/metabolism , Humans , Kinetics , Temperature
13.
Nat Commun ; 11(1): 3677, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699279

ABSTRACT

Through the formation of concentration gradients, morphogens drive graded responses to extracellular signals, thereby fine-tuning cell behaviors in complex tissues. Here we show that the chemokine CXCL13 forms both soluble and immobilized gradients. Specifically, CXCL13+ follicular reticular cells form a small-world network of guidance structures, with computer simulations and optimization analysis predicting that immobilized gradients created by this network promote B cell trafficking. Consistent with this prediction, imaging analysis show that CXCL13 binds to extracellular matrix components in situ, constraining its diffusion. CXCL13 solubilization requires the protease cathepsin B that cleaves CXCL13 into a stable product. Mice lacking cathepsin B display aberrant follicular architecture, a phenotype associated with effective B cell homing to but not within lymph nodes. Our data thus suggest that reticular cells of the B cell zone generate microenvironments that shape both immobilized and soluble CXCL13 gradients.


Subject(s)
B-Lymphocytes/immunology , Cellular Microenvironment/immunology , Chemokine CXCL13/metabolism , Dendritic Cells, Follicular/immunology , Adaptive Immunity , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cathepsin B/genetics , Cathepsin B/metabolism , Cell Line , Chemokine CXCL13/immunology , Computer Simulation , Dendritic Cells, Follicular/cytology , Dendritic Cells, Follicular/metabolism , Extracellular Matrix/metabolism , Humans , Mice , Mice, Knockout , Microscopy, Fluorescence , Models, Biological , Palatine Tonsil/cytology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Stromal Cells/immunology , Stromal Cells/metabolism
14.
J Neuroinflammation ; 17(1): 87, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32192526

ABSTRACT

BACKGROUND: An emerging problem in the treatment of breast cancer is the increasing incidence of metastases to the brain. Metastatic brain tumours are incurable and can cause epileptic seizures and cognitive impairment, so better understanding of this niche, and the cellular mechanisms, is urgently required. Microglia are the resident brain macrophage population, becoming "activated" by neuronal injury, eliciting an inflammatory response. Microglia promote proliferation, angiogenesis and invasion in brain tumours and metastases. However, the mechanisms underlying microglial involvement appear complex and better models are required to improve understanding of function. METHODS: Here, we sought to address this need by developing a model to study metastatic breast cancer cell-microglial interactions using intravital imaging combined with ex vivo electrophysiology. We implanted an optical window on the parietal bone to facilitate observation of cellular behaviour in situ in the outer cortex of heterozygous Cx3cr1GFP/+ mice. RESULTS: We detected GFP-expressing microglia in Cx3cr1GFP/+ mice up to 350 µm below the window without significant loss of resolution. When DsRed-expressing metastatic MDA-MB-231 breast cancer cells were implanted in Matrigel under the optical window, significant accumulation of activated microglia around invading tumour cells could be observed. This inflammatory response resulted in significant cortical disorganisation and aberrant spontaneously-occurring local field potential spike events around the metastatic site. CONCLUSIONS: These data suggest that peritumoral microglial activation and accumulation may play a critical role in local tissue changes underpinning aberrant cortical activity, which offers a possible mechanism for the disrupted cognitive performance and seizures seen in patients with metastatic breast cancer.


Subject(s)
Brain Neoplasms/secondary , Breast Neoplasms/pathology , Disease Models, Animal , Intravital Microscopy/methods , Microglia , Animals , Cell Line, Tumor , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Tumor Microenvironment/physiology
15.
J Cell Physiol ; 235(4): 3950-3972, 2020 04.
Article in English | MEDLINE | ID: mdl-31612502

ABSTRACT

Ion channels can regulate the plasma membrane potential (Vm ) and cell migration as a result of altered ion flux. However, the mechanism by which Vm regulates motility remains unclear. Here, we show that the Nav 1.5 sodium channel carries persistent inward Na+ current which depolarizes the resting Vm at the timescale of minutes. This Nav 1.5-dependent Vm depolarization increases Rac1 colocalization with phosphatidylserine, to which it is anchored at the leading edge of migrating cells, promoting Rac1 activation. A genetically encoded FRET biosensor of Rac1 activation shows that depolarization-induced Rac1 activation results in acquisition of a motile phenotype. By identifying Nav 1.5-mediated Vm depolarization as a regulator of Rac1 activation, we link ionic and electrical signaling at the plasma membrane to small GTPase-dependent cytoskeletal reorganization and cellular migration. We uncover a novel and unexpected mechanism for Rac1 activation, which fine tunes cell migration in response to ionic and/or electric field changes in the local microenvironment.


Subject(s)
Breast Neoplasms/genetics , Cellular Microenvironment/genetics , NAV1.5 Voltage-Gated Sodium Channel/genetics , rac1 GTP-Binding Protein/genetics , Biosensing Techniques , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Movement/genetics , Cytoskeleton/chemistry , Cytoskeleton/genetics , Female , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , Humans , Ion Channels/genetics , Membrane Potentials/genetics , NAV1.5 Voltage-Gated Sodium Channel/chemistry , Signal Transduction/genetics , rac1 GTP-Binding Protein/chemistry
16.
Adv Exp Med Biol ; 1164: 109-118, 2019.
Article in English | MEDLINE | ID: mdl-31576544

ABSTRACT

Choosing an appropriate cell model(s) is the first decision to be made before starting a new project or programme of study. Here, we address the rationale that can be behind this decision and we summarize the current cell models that are used to study prostate cancer. Researchers face the challenge of choosing a model that recapitulates the complexity and heterogeneity of prostate cancer. The use of primary prostate epithelial cells cultured from patient tissue is discussed, and the necessity for close clinical-academic collaboration in order to do this is highlighted. Finally, a novel quantitative phase imaging technique is described, along with the potential for cell characterization to not only include gene expression and protein markers but also morphological features, cell behaviour and kinetic activity.


Subject(s)
Cell Line, Tumor , Epithelial Cells , Prostatic Neoplasms , Cell Line , Epithelial Cells/cytology , Humans , Male
17.
J Cell Sci ; 132(19)2019 10 10.
Article in English | MEDLINE | ID: mdl-31515278

ABSTRACT

Tumor stem cells and malignant multicellular networks have been separately implicated in the therapeutic resistance of glioblastoma multiforme (GBM), the most aggressive type of brain cancer in adults. Here, we show that small-molecule inhibition of RHO-associated serine/threonine kinase proteins (ROCKi) significantly promoted the outgrowth of neurite-like cell projections in cultures of heterogeneous patient-derived GBM stem-like cells. These projections formed de novo-induced cellular network (iNet) 'webs', which regressed after withdrawal of ROCKi. Connected cells within the iNet web exhibited long range Ca2+ signal transmission, and significant lysosomal and mitochondrial trafficking. In contrast to their less-connected vehicle control counterparts, iNet cells remained viable and proliferative after high-dose radiation. These findings demonstrate a link between ROCKi-regulated cell projection dynamics and the formation of radiation-resistant multicellular networks. Our study identifies means to reversibly induce iNet webs ex vivo, and may thereby accelerate future studies into the biology of GBM cellular networks.


Subject(s)
Glioblastoma/metabolism , Neoplastic Stem Cells/metabolism , Neurites/metabolism , Calcium Signaling/physiology , Cell Line, Tumor , Cell Movement/physiology , Humans , Immunoblotting , Lysosomes/metabolism , Mitochondria/metabolism , Neuronal Outgrowth/physiology , Phenotype , Protein Serine-Threonine Kinases/metabolism
18.
Chem Sci ; 10(17): 4673-4683, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31123578

ABSTRACT

Photoactivation of photosensitisers can be utilised to elicit the production of ROS, for potential therapeutic applications, including the destruction of diseased tissues and tumours. A novel class of photosensitiser, exemplified by DC324, has been designed possessing a modular, low molecular weight and 'drug-like' structure which is bioavailable and can be photoactivated by UV-A/405 nm or corresponding two-photon absorption of near-IR (800 nm) light, resulting in powerful cytotoxic activity, ostensibly through the production of ROS in a cellular environment. A variety of in vitro cellular assays confirmed ROS formation and in vivo cytotoxic activity was exemplified via irradiation and subsequent targeted destruction of specific areas of a zebrafish embryo.

19.
Front Immunol ; 9: 1073, 2018.
Article in English | MEDLINE | ID: mdl-29872430

ABSTRACT

Soluble factors are an essential means of communication between cells and their environment. However, many molecules readily interact with extracellular matrix components, giving rise to multiple modes of diffusion. The molecular quantification of diffusion in situ is thus a challenging imaging frontier, requiring very high spatial and temporal resolution. Overcoming this methodological barrier is key to understanding the precise spatial patterning of the extracellular factors that regulate immune function. To address this, we have developed a high-speed light microscopy system capable of millisecond sampling in ex vivo tissue samples and submillisecond sampling in controlled in vitro samples to characterize molecular diffusion in a range of complex microenvironments. We demonstrate that this method outperforms competing tools for determining molecular mobility of fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) for evaluation of diffusion. We then apply this approach to study the chemokine CXCL13, a key determinant of lymphoid tissue architecture, and B-cell-mediated immunity. Super-resolution single-molecule tracking of fluorescently labeled CCL19 and CXCL13 in collagen matrix was used to assess the heterogeneity of chemokine mobility behaviors, with results indicating an immobile fraction and a mobile fraction for both molecules, with distinct diffusion rates of 8.4 ± 0.2 and 6.2 ± 0.3 µm2s-1, respectively. To better understand mobility behaviors in situ, we analyzed CXCL13-AF647 diffusion in murine lymph node tissue sections and observed both an immobile fraction and a mobile fraction with an example diffusion coefficient of 6.6 ± 0.4 µm2s-1, suggesting that mobility within the follicle is also multimodal. In quantitatively studying mobility behaviors at the molecular level, we have obtained an increased understanding of CXCL13 bioavailability within the follicle. Our high-speed single-molecule tracking approach affords a novel perspective from which to understand the mobility of soluble factors relevant to the immune system.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Tracking , Chemokine CXCL13/genetics , Single Molecule Imaging , Algorithms , Biomarkers , Cell Tracking/methods , Chemokine CCL19/genetics , Chemokine CCL19/metabolism , Chemokine CXCL13/metabolism , Collagen/metabolism , Humans , Image Processing, Computer-Assisted , Lymph Nodes/metabolism , Single Molecule Imaging/methods , Spectrometry, Fluorescence/methods
20.
Sci Rep ; 8(1): 8003, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29789661

ABSTRACT

Cell-to-cell communication engages signaling and spatiotemporal reorganization events driven by highly context-dependent and dynamic intercellular interactions, which are difficult to capture within heterogeneous primary cell cultures. Here, we present a straightforward correlative imaging approach utilizing commonly available instrumentation to sample large numbers of cell-cell interaction events, allowing qualitative and quantitative characterization of rare functioning cell-conjugates based on calcium signals. We applied this approach to examine a previously uncharacterized immunological synapse, investigating autologous human blood CD4+ T cells and monocyte-derived macrophages (MDMs) forming functional conjugates in vitro. Populations of signaling conjugates were visualized, tracked and analyzed by combining live imaging, calcium recording and multivariate statistical analysis. Correlative immunofluorescence was added to quantify endogenous molecular recruitments at the cell-cell junction. By analyzing a large number of rare conjugates, we were able to define calcium signatures associated with different states of CD4+ T cell-MDM interactions. Quantitative image analysis of immunostained conjugates detected the propensity of endogenous T cell surface markers and intracellular organelles to polarize towards cell-cell junctions with high and sustained calcium signaling profiles, hence defining immunological synapses. Overall, we developed a broadly applicable approach enabling detailed single cell- and population-based investigations of rare cell-cell communication events with primary cells.


Subject(s)
CD4-Positive T-Lymphocytes/physiology , Cell Communication/physiology , Immunological Synapses/physiology , Macrophages/physiology , Molecular Imaging/methods , Single-Cell Analysis/instrumentation , Antigen-Presenting Cells/cytology , Antigen-Presenting Cells/physiology , CD4-Positive T-Lymphocytes/cytology , Cell Communication/immunology , Cells, Cultured , Evaluation Studies as Topic , Humans , Macrophages/cytology , Molecular Imaging/statistics & numerical data , Principal Component Analysis , Signal Transduction/immunology , Single-Cell Analysis/methods , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL