Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cardiovasc Med ; 9: 1033457, 2022.
Article in English | MEDLINE | ID: mdl-36419485

ABSTRACT

Aims: PERM1 is a striated muscle-specific regulator of mitochondrial bioenergetics. We previously demonstrated that PERM1 is downregulated in the failing heart and that PERM1 positively regulates metabolic genes known as targets of the transcription factor ERRα and its coactivator PGC-1α in cultured cardiomyocytes. The aims of this study were to determine the effect of loss of PERM1 on cardiac function and energetics using newly generated Perm1-knockout (Perm1 -/-) mice and to investigate the molecular mechanisms of its transcriptional control. Methods and results: Echocardiography showed that ejection fraction and fractional shortening were lower in Perm1 -/- mice than in wild-type mice (both p < 0.05), and the phosphocreatine-to-ATP ratio was decreased in Perm1 -/- hearts (p < 0.05), indicating reduced contractile function and energy reserves of the heart. Integrated proteomic and metabolomic analyses revealed downregulation of oxidative phosphorylation and upregulation of glycolysis and polyol pathways in Perm1 -/- hearts. To examine whether PERM1 regulates energy metabolism through ERRα, we performed co-immunoprecipitation assays, which showed that PERM1 bound to ERRα in cardiomyocytes and the mouse heart. DNA binding and reporter gene assays showed that PERM1 was localized to and activated the ERR target promoters partially through ERRα. Mass spectrometry-based screening in cardiomyocytes identified BAG6 and KANK2 as potential PERM1's binding partners in transcriptional regulation. Mammalian one-hybrid assay, in which PERM1 was fused to Gal4 DNA binding domain, showed that the recruitment of PERM1 to a gene promoter was sufficient to activate transcription, which was blunted by silencing of either PGC-1α, BAG6, or KANK2. Conclusion: This study demonstrates that PERM1 is an essential regulator of cardiac energetics and function and that PERM1 is a novel transcriptional coactivator in the ERRα/PGC-1α axis that functionally interacts with BAG6 and KANK2.

2.
PLoS One ; 15(6): e0234913, 2020.
Article in English | MEDLINE | ID: mdl-32574189

ABSTRACT

The transcriptional regulatory machinery in mitochondrial bioenergetics is complex and is still not completely understood. We previously demonstrated that the histone methyltransferase Smyd1 regulates mitochondrial energetics. Here, we identified Perm1 (PPARGC-1 and ESRR-induced regulator, muscle specific 1) as a downstream target of Smyd1 through RNA-seq. Chromatin immunoprecipitation assay showed that Smyd1 directly interacts with the promoter of Perm1 in the mouse heart, and this interaction was significantly reduced in mouse hearts failing due to pressure overload for 4 weeks, where Perm1 was downregulated (24.4 ± 5.9% of sham, p<0.05). Similarly, the Perm1 protein level was significantly decreased in patients with advanced heart failure (55.2 ± 13.1% of donors, p<0.05). Phenylephrine (PE)-induced hypertrophic stress in cardiomyocytes also led to downregulation of Perm1 (55.7 ± 5.7% of control, p<0.05), and adenovirus-mediated overexpression of Perm1 rescued PE-induced downregulation of estrogen-related receptor alpha (ERRα), a key transcriptional regulator of mitochondrial energetics, and its target gene, Ndufv1 (Complex I). Pathway enrichment analysis of cardiomyocytes in which Perm1 was knocked-down by siRNA (siPerm1), revealed that the most downregulated pathway was metabolism. Cell stress tests using the Seahorse XF analyzer showed that basal respiration and ATP production were significantly reduced in siPerm1 cardiomyocytes (40.7% and 23.6% of scrambled-siRNA, respectively, both p<0.05). Luciferase reporter gene assay further revealed that Perm1 dose-dependently increased the promoter activity of the ERRα gene and known target of ERRα, Ndufv1 (Complex I). Overall, our study demonstrates that Perm1 is an essential regulator of cardiac energetics through ERRα, as part of the Smyd1 regulatory network.


Subject(s)
DNA-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Muscle Proteins/metabolism , Myocardium/metabolism , Transcription Factors/metabolism , Adult , Aged , Animals , DNA Methylation , Disease Models, Animal , Down-Regulation , Electron Transport Complex I/genetics , Energy Metabolism/genetics , Female , Gene Expression Regulation , Gene Knockdown Techniques , Heart Failure/pathology , Heart Failure/surgery , Heart Transplantation , Histones/genetics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Muscle Proteins/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Phosphorylation , Phenylephrine/pharmacology , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA, Small Interfering/metabolism , RNA-Seq , Rats , Receptors, Estrogen/genetics , ERRalpha Estrogen-Related Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...