Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 49(27): 9480-9486, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32608457

ABSTRACT

Low temperature stopped-flow techniques were used to investigate the reaction of three different iron(ii) complexes with nitrogen monoxide. The kinetic studies allowed calculation of the activation parameters from the corresponding Eyring plots for all three systems. The reaction of iron(ii) chloride with NO leading to the formation of MNIC (mononitrosyl-iron-complex) and DNIC (dinitrosyl-iron-complex) led to activation parameters of ΔH‡ = 55.4 ± 0.4 kJ mol-1 and ΔS‡ = 13 ± 2 J K-1 mol-1 for MNIC and ΔH‡ = 32 ± 6 kJ mol-1 and ΔS‡ = -193 ± 21 J K-1 mol-1 for DNIC. Formation of MNIC turned out to be much faster in comparison with DNIC. In contrast, activation parameters for the formation of monoculear [Fe(bztpen)(NO)](OTf)2 (bztpen = N-benzyl-N,N',N'-tris(2-pyridylmethyl)-ethylenediamine) ΔH‡ = 17.8 ± 0.8 kJ mol-1 and ΔS‡ = -181 ± 3 J K-1 mol-1 supported an associative mechanism. Interestingly, [Fe(bztpen)(CH3CN)](OTf)2 does not react with dioxygen at all. Furthermore, activation parameters of ΔH‡ = 37.7 ± 0.7 kJ mol-1 and ΔS‡ = -66 ± 3 J K-1 mol-1 were obtained for the reaction of NO with the dinuclear iron(ii) H-HPTB complex (H-HPTB = N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane), [Fe2(H-HPTB)(Cl)3]. The kinetic data allowed postulation of the mechanisms for all of these reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...