Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000969

ABSTRACT

The glucose level in the blood is measured through invasive methods, causing discomfort in the patient, loss of sensitivity in the area where the sample is obtained, and healing problems. This article deals with the design, implementation, and evaluation of a device with an ESP-WROOM-32D microcontroller with the application of near-infrared photospectroscopy technology that uses a diode array that transmits between 830 nm and 940 nm to measure glucose levels in the blood. In addition, the system provides a webpage for the monitoring and control of diabetes mellitus for each patient; the webpage is hosted on a local Linux server with a MySQL database. The tests are conducted on 120 people with an age range of 35 to 85 years; each person undergoes two sample collections with the traditional method and two with the non-invasive method. The developed device complies with the ranges established by the American Diabetes Association: presenting a measurement error margin of close to 3% in relation to traditional blood glucose measurement devices. The purpose of the study is to design and evaluate a device that uses non-invasive technology to measure blood glucose levels. This involves constructing a non-invasive glucometer prototype that is then evaluated in a group of participants with diabetes.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Diabetes Mellitus , Humans , Aged , Blood Glucose/analysis , Middle Aged , Adult , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose Self-Monitoring/methods , Diabetes Mellitus/blood , Aged, 80 and over , Male , Female , Spectroscopy, Near-Infrared/methods , Spectroscopy, Near-Infrared/instrumentation
2.
Heliyon ; 9(1): e12868, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36691530

ABSTRACT

Several technological blocks are being developed to provide solutions to the requirements necessary for the implementation of industrial IoT. However, this is feasible with the resources offered by the Cloud, such as processing, applications and services. Despite this, there are negative aspects such as bandwidth, Internet service variability, latency, lack of filtering of junk data transmitted to the cloud and security. From another perspective, these situations emerge as challenges that are being studied to meet the needs of this new industrial era, which means that the important contribution of academia, companies and consortiums, are achieving a change of course, by taking advantage of the potential of the Cloud but now from the vicinity or perimeter of a production plant. To achieve this task, some pillars of IoT technology are being used as a basis, such as the designs of Fog Computing Platforms (FCP), Edge Computing (EC) and considering the need for cooperation between IT and operation technologies (IT and OT), with which it is intended to accelerate the paradigm shift that this situation has generated. The objective of this study is to show a systematic literature review (SLR) of recent studies on hierarchical and flat peer-to-peer (P2P) architectures implemented for manufacturing IIoT, analyzing those successes and weaknesses derived from them such as latency, security, computing methodologies, virtualization architectures, Fog Computing (FC) in Manufacturing Execution Systems (MES), Quality of Service (QoS) and connectivity, with the aim of motivating possible research points when implementing IIoT with these new technologies.

3.
Heliyon ; 6(4): e03706, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32300668

ABSTRACT

The industrial applications in the cloud do not meet the requirements of low latency and reliability since variables must be continuously monitored. For this reason, industrial internet of things (IIoT) is a challenge for the current infrastructure because it generates a large amount of data making cloud computing reach the edge and become fog computing (FC). FC can be considered as a new component of Industry 4.0, which aims to solve the problem of big data, reduce energy consumption in industrial sensor networks, improve the security, processing and storage real-time data. It is a promising growing paradigm that offers new opportunities and challenges, beside the ones inherited from cloud computing, which requires a new heterogeneous architecture to improve the network capacity for delivering edge services, that is, providing computing resources closer to the end user. The purpose of this research is to show a systematic review of the most recent studies about the architecture, security, latency, and energy consumption that FC presents at industrial level and thus provide an overview of the current characteristics and challenges of this new technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...