Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters











Publication year range
1.
Sci Rep ; 14(1): 545, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38177653

ABSTRACT

Rodents of the genus Cerradomys belong to tribe Oryzomyini, one of the most diverse and speciose groups in Sigmodontinae (Rodentia, Cricetidae). The speciation process in Cerradomys is associated with chromosomal rearrangements and biogeographic dynamics in South America during the Pleistocene era. As the morphological, molecular and karyotypic aspects of Myomorpha rodents do not evolve at the same rate, we strategically employed karyotypic characters for the construction of chromosomal phylogeny to investigate whether phylogenetic relationships using chromosomal data corroborate the radiation of Cerradomys taxa recovered by molecular phylogeny. Comparative chromosome painting using Hylaeamys megacephalus (HME) whole chromosome probes in C. langguthi (CLA), Cerradomys scotii (CSC), C. subflavus (CSU) and C. vivoi (CVI) shows that karyotypic variability is due to 16 fusion events, 2 fission events, 10 pericentric inversions and 1 centromeric repositioning, plus amplification of constitutive heterochromatin in the short arms of the X chromosomes of CSC and CLA. The chromosomal phylogeny obtained by Maximum Parsimony analysis retrieved Cerradomys as a monophyletic group with 97% support (bootstrap), with CSC as the sister to the other species, followed by a ramification into two clades (69% of branch support), the first comprising CLA and the other branch including CVI and CSU. We integrated the chromosome painting analysis of Eumuroida rodents investigated by HME and Mus musculus (MMU) probes and identified several syntenic blocks shared among representatives of Cricetidae and Muridae. The Cerradomys genus underwent an extensive karyotypic evolutionary process, with multiple rearrangements that shaped extant karyotypes. The chromosomal phylogeny corroborates the phylogenetic relationships proposed by molecular analysis and indicates that karyotypic diversity is associated with species radiation. Three syntenic blocks were identified as part of the ancestral Eumuroida karyotype (AEK): MMU 7/19 (AEK 1), MMU 14 (AEK 10) and MMU 12 (AEK 11). Besides, MMU 5/10 (HME 18/2/24) and MMU 8/13 (HME 22/5/11) should be considered as signatures for Cricetidae, while MMU 5/9/14, 5/7/19, 5 and 8/17 for Sigmodontinae.


Subject(s)
Rodentia , Sigmodontinae , Animals , Sigmodontinae/genetics , Rodentia/genetics , Phylogeny , Arvicolinae , Muridae , Chromosome Inversion , Chromosome Painting
2.
PLoS One ; 18(11): e0294776, 2023.
Article in English | MEDLINE | ID: mdl-38011093

ABSTRACT

Pelecaniformes is an order of waterbirds that exhibit diverse and distinct morphologies. Ibis, heron, pelican, hammerkop, and shoebill are included within the order. Despite their fascinating features, the phylogenetic relationships among the families within Pelecaniformes remain uncertain and pose challenges due to their complex evolutionary history. Their karyotypic evolution is another little-known aspect. Therefore, to shed light on the chromosomal rearrangements that have occurred during the evolution of Pelecaniformes, we have used whole macrochromosome probes from Gallus gallus (GGA) to show homologies on three species with different diploid numbers, namely Cochlearius cochlearius (2n = 74), Eudocimus ruber (2n = 66), and Syrigma sibilatrix (2n = 62). A fusion between GGA6 and GGA7 was found in C. cochlearius and S. sibilatrix. In S. sibilatrix the GGA8, GGA9 and GGA10 hybridized to the long arms of biarmed macrochromosomes, indicating fusions with microchromosomes. In E. ruber the GGA7 and GGA8 hybridized to the same chromosome pair. After comparing our painting results with previously published data, we show that distinct chromosomal rearrangements have occurred in different Pelecaniformes lineages. Our study provides new insight into the evolutionary history of Pelecaniformes and the chromosomal changes involving their macrochromosomes and microchromosomes that have taken place in different species within this order.


Subject(s)
Chickens , Chromosome Painting , Humans , Animals , Phylogeny , Karyotyping , Karyotype , Chickens/genetics , Chromosome Aberrations , Evolution, Molecular
3.
Genes (Basel) ; 14(4)2023 03 28.
Article in English | MEDLINE | ID: mdl-37107574

ABSTRACT

Although molecular information for the wood stork (Mycteria americana) has been well described, data concerning their karyotypical organization and phylogenetic relationships with other storks are still scarce. Thus, we aimed to analyze the chromosomal organization and diversification of M. americana, and provide evolutionary insights based on phylogenetic data of Ciconiidae. For this, we applied both classical and molecular cytogenetic techniques to define the pattern of distribution of heterochromatic blocks and their chromosomal homology with Gallus gallus (GGA). Maximum likelihood analyses and Bayesian inferences (680 bp COI and 1007 bp Cytb genes) were used to determine their phylogenetic relationship with other storks. The results confirmed 2n = 72, and the heterochromatin distribution pattern was restricted to centromeric regions of the chromosomes. FISH experiments identified fusion and fission events involving chromosomes homologous to GGA macrochromosome pairs, some of which were previously found in other species of Ciconiidae, possibly corresponding to synapomorphies for the group. Phylogenetic analyses resulted in a tree that recovered only Ciconinii as a monophyletic group, while Mycteriini and Leptoptlini tribes were configured as paraphyletic clades. In addition, the association between phylogenetic and cytogenetic data corroborates the hypothesis of a reduction in the diploid number throughout the evolution of Ciconiidae.


Subject(s)
Chromosomes , Diploidy , Animals , Phylogeny , Bayes Theorem , Chickens/genetics
4.
Sci Rep ; 12(1): 19514, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376355

ABSTRACT

The subfamily Phyllostominae (Chiroptera, Phyllostomidae) comprises 10 genera of Microchiroptera bats from the Neotropics. The taxonomy of this group is controversial due to incongruities in the phylogenetic relationships evident from different datasets. The genus Lophostoma currently includes eight species whose phylogenetic relationships have not been resolved. Integrative analyzes including morphological, molecular and chromosomal data are powerful tools to investigate the phylogenetics of organisms, particularly if obtained by chromosomal painting. In the present work we performed comparative genomic mapping of three species of Lophostoma (L. brasiliense 2n = 30, L. carrikeri 2n = 26 and L. schulzi 2n = 26), by chromosome painting using whole chromosome probes from Phyllostomus hastatus and Carollia brevicauda; this included mapping interstitial telomeric sites. The karyotype of L. schulzi (LSC) is a new cytotype. The species L. brasiliense and L. carrikeri showed interstitial telomeric sequences that probably resulted from expansions of repetitive sequences near pericentromeric regions. The addition of chromosomal painting data from other species of Phyllostominae allowed phylogeny construction by maximum parsimony, and the determination that the genera of this subfamily are monophyletic, and that the genus Lophostoma is paraphyletic. Additionally, a review of the taxonomic status of LSC is suggested to determine if this species should be reclassified as part of the genus Tonatia.


Subject(s)
Chiroptera , Chromosome Painting , Animals , Chiroptera/genetics , Chromosome Painting/methods , Karyotype , Phylogeny , Telomere
5.
PLoS One ; 17(8): e0272836, 2022.
Article in English | MEDLINE | ID: mdl-35947613

ABSTRACT

Charadriiformes represent one of the largest orders of birds; members of this order are diverse in morphology, behavior and reproduction, making them an excellent model for studying evolution. It is accepted that the avian putative ancestral karyotype, with 2n = 80, remains conserved for about 100 million years. So far, only a few species of Charadriiformes have been studied using molecular cytogenetics. Here, we performed chromosome painting on metphase chromosomes of two species of Charadriidae, Charadrius collaris and Vanellus chilensis, with whole chromosome paint probes from Burhinus oedicnemus. Charadrius collaris has a diploid number of 76, with both sex chromosomes being submetacentric. In V. chilensi a diploid number of 78 was identified, and the Z chromosome is submetacentric. Chromosome painting suggests that chromosome conservation is a characteristic common to the family Charadriidae. The results allowed a comparative analysis between the three suborders of Charadriiformes and the order Gruiformes using chromosome rearrangements to understand phylogenetic relationships between species and karyotypic evolution. However, the comparative analysis between the Charadriiformes suborders so far has not revealed any shared rearrangements, indicating that each suborder follows an independent evolutionary path, as previously proposed. Likewise, although the orders Charadriiformes and Gruiformes are placed on sister branches, they do not share any signature chromosomal rearrangements.


Subject(s)
Amphipoda , Charadriiformes , Amphipoda/genetics , Animals , Birds/genetics , Charadriiformes/genetics , Chromosome Painting/methods , Evolution, Molecular , Phylogeny , Sex Chromosomes/genetics
6.
Sci Rep ; 12(1): 8690, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610291

ABSTRACT

X-autosome translocation (XY1Y2) has been reported in distinct groups of vertebrates suggesting that the rise of a multiple sex system within a species may act as a reproductive barrier and lead to speciation. The viability of this system has been linked with repetitive sequences located between sex and autosomal portions of the translocation. Herein, we investigate Oecomys auyantepui, using chromosome banding and Fluorescence In Situ Hybridization with telomeric and Hylaeamys megacephalus whole-chromosome probes, and phylogenetic reconstruction using mtDNA and nuDNA sequences. We describe an amended karyotype for O. auyantepui (2n = 64♀65♂/FNa = 84) and report for the first time a multiple sex system (XX/XY1Y2) in Oryzomyini rodents. Molecular data recovered O. auyantepui as a monophyletic taxon with high support and cytogenetic data indicate that O. auyantepui may exist in two lineages recognized by distinct sex systems. The Neo-X exhibits repetitive sequences located between sex and autosomal portions, which would act as a boundary between these two segments. The G-banding comparisons of the Neo-X chromosomes of other Sigmodontinae taxa revealed a similar banding pattern, suggesting that the autosomal segment in the Neo-X can be shared among the Sigmodontinae lineages with a XY1Y2 sex system.


Subject(s)
Chromosome Painting , Sigmodontinae , Animals , In Situ Hybridization, Fluorescence , Phylogeny , Rodentia/genetics , Sex Chromosomes/genetics , Sigmodontinae/genetics
7.
Front Genet ; 13: 832495, 2022.
Article in English | MEDLINE | ID: mdl-35401658

ABSTRACT

The genus Gymnotus is a large monophyletic group of freshwater weakly-electric fishes, with wide distribution in Central and South America. It has 46 valid species divided into six subgenera (Gymnotus, Tijax, Tigre, Lamontianus, Tigrinus and Pantherus) with large chromosome plasticity and diploid numbers (2n) ranging from 34 to 54. Within this rich diversity, there is controversy about whether Gymnotus (Gymnotus) carapo species is a single widespread species or a complex of cryptic species. Cytogenetic studies show different diploid numbers for G. carapo species, ranging from 40 to 54 chromosomes with varied karyotypes found even between populations sharing the same 2n. Whole chromosome painting has been used in studies on fish species and recently has been used for tracking the chromosomal evolution of Gymnotus and assisting in its cytotaxonomy. Comparative genomic mapping using chromosome painting has shown more complex rearrangements in Gymnotus carapo than shown in previous studies by classical cytogenetics. These studies demonstrate that multiple chromosome pairs are involved in its chromosomal reorganization, suggesting the presence of a complex of cryptic species due to a post zygotic barrier. In the present study, metaphase chromosomes of G. carapo occidentalis "catalão" (GCC, 2n = 40, 30m/sm+10st/a) from the Catalão Lake, Amazonas, Brazil, were hybridized with whole chromosome probes derived from the chromosomes of G. carapo (GCA, 2n = 42, 30m/sm+12st/a). The results reveal chromosome rearrangements and a high number of repetitive DNA sites. Of the 12 pairs of G. carapo chromosomes that could be individually identified (GCA 1-3, 6, 7, 9, 14, 16 and 18-21), 8 pairs (GCA 1, 2, 6, 7, 9, 14, 20, 21) had homeology conserved in GCC. Of the GCA pairs that are grouped (GCA [4, 8], [5, 17], [10, 11] and [12, 13, 15]), most kept the number of signals in GCC (GCA [5, 17], [10, 11] and [12, 13, 15]). The remaining chromosomes are rearranged in the GCC karyotype. Analysis of both populations of the G. carapo cytotypes shows extensive karyotype reorganization. Along with previous studies, this suggests that the different cytotypes analyzed here may represent different species and supports the hypothesis that G. carapo is not a single widespread species, but a group of cryptic species.

8.
PLoS One ; 16(11): e0259905, 2021.
Article in English | MEDLINE | ID: mdl-34793511

ABSTRACT

Although most birds show karyotypes with diploid number (2n) around 80, with few macrochromosomes and many microchromosomes pairs, some groups, such as the Accipitriformes, are characterized by a large karyotypic reorganization, which resulted in complements with low diploid numbers, and a smaller number of microchromosomal pairs when compared to other birds. Among Accipitriformes, the Accipitridae family is the most diverse and includes, among other subfamilies, the subfamily Aquilinae, composed of medium to large sized species. The Black-Hawk-Eagle (Spizaetus tyrannus-STY), found in South America, is a member of this subfamily. Available chromosome data for this species includes only conventional staining. Hence, in order to provide additional information on karyotype evolution process within this group, we performed comparative chromosome painting between S. tyrannus and Gallus gallus (GGA). Our results revealed that at least 29 fission-fusion events occurred in the STY karyotype, based on homology with GGA. Fissions occurred mainly in syntenic groups homologous to GGA1-GGA5. On the other hand, the majority of the microchromosomes were found fused to other chromosomal elements in STY, indicating these rearrangements played an important role in the reduction of the 2n to 68. Comparison with hybridization pattern of the Japanese-Mountain-Eagle (Nisaetus nipalensis orientalis), the only Aquilinae analyzed by comparative chromosome painting previously, did not reveal any synapomorphy that could represent a chromosome signature to this subfamily. Therefore, conclusions about karyotype evolution in Aquilinae require additional painting studies.


Subject(s)
Chickens/genetics , Chromosome Painting/veterinary , Raptors/genetics , Animals , Cells, Cultured , Chromosomes, Artificial, Bacterial , DNA Probes , Evolution, Molecular , Female , Gene Fusion , In Situ Hybridization, Fluorescence/veterinary , Karyotype , Phylogeography
9.
PLoS One ; 16(10): e0258474, 2021.
Article in English | MEDLINE | ID: mdl-34634084

ABSTRACT

Rhipidomys (Sigmodontinae, Thomasomyini) has 25 recognized species, with a wide distribution ranging from eastern Panama to northern Argentina. Cytogenetic data has been described for 13 species with 12 of them having 2n = 44 with a high level of autosomal fundamental number (FN) variation, ranging from 46 to 80, assigned to pericentric inversions. The species are grouped in groups with low FN (46-52) and high FN (72-80). In this work the karyotypes of Rhipidomys emiliae (2n = 44, FN = 50) and Rhipidomys mastacalis (2n = 44, FN = 74), were studied by classical cytogenetics and by fluorescence in situ hybridization using telomeric and whole chromosome probes (chromosome painting) of Hylaeamys megacephalus (HME). Chromosome painting revealed homology between 36 segments of REM and 37 of RMA. We tested the hypothesis that pericentric inversions are the predominant chromosomal rearrangements responsible for karyotypic divergence between these species, as proposed in literature. Our results show that the genomic diversification between the karyotypes of the two species resulted from translocations, centromeric repositioning and pericentric inversions. The chromosomal evolution in Rhipidomys was associated with karyotypical orthoselection. The HME probes revealed that seven syntenic probably ancestral blocks for Sigmodontinae are present in Rhipidomys. An additional syntenic block described here is suggested as part of the subfamily ancestral karyotype. We also define five synapomorphies that can be used as chromosomal signatures for Rhipidomys.


Subject(s)
Sigmodontinae , Animals , In Situ Hybridization, Fluorescence , Rodentia
10.
Genet Mol Biol ; 44(2): e20200241, 2021.
Article in English | MEDLINE | ID: mdl-33821875

ABSTRACT

Although Rallidae is the most diverse family within Gruiformes, there is little information concerning the karyotype of the species in this group. In fact, Gallinula melanops, a species of Rallidae found in Brazil, is among the few species studied cytogenetically, but only with conventional staining and repetitive DNA mapping, showing 2n=80. Thus, in order to understand the karyotypic evolution and phylogeny of this group, the present study aimed to analyze the karyotype of G. melanops by classical and molecular cytogenetics, comparing the results with other species of Gruiformes. The results show that G. melanops has the same chromosome rearrangements as described in Gallinula chloropus (Clade Fulica), including fission of ancestral chromosomes 4 and 5 of Gallus gallus (GGA), beyond the fusion between two of segments resultants of the GGA4/GGA5, also fusions between the chromosomes GGA6/GGA7. Thus, despite the fact that some authors have suggested the inclusion of G. melanops in genus Porphyriops, our molecular cytogenetic results confirm its place in the Gallinula genus.

11.
BMC Ecol Evol ; 21(1): 34, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33653261

ABSTRACT

BACKGROUND: Thamnophilidae birds are the result of a monophyletic radiation of insectivorous Passeriformes. They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes. The karyotypic relationships within and between Thamnophilidae and another Passeriformes therefore remain poorly understood. Recent studies have identified the occurrence of intrachromosomal rearrangements in Passeriformes using in silico data and molecular cytogenetic tools. These results demonstrate that intrachromosomal rearrangements are more common in birds than previously thought and are likely to contribute to speciation events. With this in mind, we investigate the apparently conserved karyotype of Willisornis vidua, the Xingu Scale-backed Antbird, using a combination of molecular cytogenetic techniques including chromosome painting with probes derived from Gallus gallus (chicken) and Burhinus oedicnemus (stone curlew), combined with Bacterial Artificial Chromosome (BAC) probes derived from the same species. The goal was to investigate the occurrence of rearrangements in an apparently conserved karyotype in order to understand the evolutionary history and taxonomy of this species. In total, 78 BAC probes from the Gallus gallus and Taeniopygia guttata (the Zebra Finch) BAC libraries were tested, of which 40 were derived from Gallus gallus macrochromosomes 1-8, and 38 from microchromosomes 9-28. RESULTS: The karyotype is similar to typical Passeriformes karyotypes, with a diploid number of 2n = 80. Our chromosome painting results show that most of the Gallus gallus chromosomes are conserved, except GGA-1, 2 and 4, with some rearrangements identified among macro- and microchromosomes. BAC mapping revealed many intrachromosomal rearrangements, mainly inversions, when comparing Willisornis vidua karyotype with Gallus gallus, and corroborates the fissions revealed by chromosome painting. CONCLUSIONS: Willisornis vidua presents multiple chromosomal rearrangements despite having a supposed conservative karyotype, demonstrating that our approach using a combination of FISH tools provides a higher resolution than previously obtained by chromosome painting alone. We also show that populations of Willisornis vidua appear conserved from a cytogenetic perspective, despite significant phylogeographic structure.


Subject(s)
Chromosome Painting , Passeriformes , Animals , Chromosomes, Artificial, Bacterial , Evolution, Molecular , Karyotype
12.
BMC Ecol Evol ; 21(1): 8, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33514318

ABSTRACT

BACKGROUND: The Scolopacidae family (Suborder Scolopaci, Charadriiformes) is composed of sandpipers and snipes; these birds are long-distance migrants that show great diversity in their behavior and habitat use. Cytogenetic studies in the Scolopacidae family show the highest diploid numbers for order Charadriiformes. This work analyzes for the first time the karyotype of Actitis macularius by classic cytogenetics and chromosome painting. RESULTS: The species has a diploid number of 92, composed mostly of telocentric pairs. This high 2n is greater than the proposed 80 for the avian ancestral putative karyotype (a common feature among Scolopaci), suggesting that fission rearrangements have formed smaller macrochromosomes and microchromosomes. Fluorescence in situ hybridization using Burhinus oedicnemus whole chromosome probes confirmed the fissions in pairs 1, 2, 3, 4 and 6 of macrochromosomes. CONCLUSION: Comparative analysis with other species of Charadriiformes studied by chromosome painting together with the molecular phylogenies for the order allowed us to raise hypotheses about the chromosomal evolution in suborder Scolopaci. From this, we can establish a clear idea of how chromosomal evolution occurred in this suborder.


Subject(s)
Charadriiformes , Chromosome Painting , Animals , Birds/genetics , Charadriiformes/genetics , Evolution, Molecular , In Situ Hybridization, Fluorescence
13.
PLoS One ; 15(10): e0241495, 2020.
Article in English | MEDLINE | ID: mdl-33119689

ABSTRACT

The genus Oecomys (Rodentia, Sigmodontinae) is distributed from southern Central America to southeastern Brazil in South America. It currently comprises 18 species, but multidisciplinary approaches such as karyotypic, morphological and molecular studies have shown that there is a greater diversity within some lineages than others. In particular, it has been proposed that O. paricola constitutes a species complex with three evolutionary units, which have been called the northern, eastern and western clades. Aiming to clarify the taxonomic status of O. paricola and determine the relevant chromosomal rearrangements, we investigated the karyotypes of samples from eastern Amazonia by chromosomal banding and FISH with Hylaeamys megacephalus (HME) whole-chromosome probes. We detected three cytotypes for O. paricola: A (OPA-A; 2n = 72, FN = 75), B (OPA-B; 2n = 70, FN = 75) and C (OPA-C; 2n = 70, FN = 72). Comparative chromosome painting showed that fusions/fissions, translocations and pericentric inversions or centromeric repositioning were responsible for the karyotypic divergence. We also detected exclusive chromosomal signatures that can be used as phylogenetic markers. Our analysis of karyotypic and distribution information indicates that OPA-A, OPA-B and OPA-C are three distinct species that belong to the eastern clade, with sympatry occurring between two of them, and that the "paricola group" is more diverse than was previously thought.


Subject(s)
Genetic Variation , Karyotype , Sigmodontinae/genetics , Animals , Chromosomes, Mammalian/genetics , Cytogenetic Analysis
14.
Front Genet ; 11: 721, 2020.
Article in English | MEDLINE | ID: mdl-32754200

ABSTRACT

Myiopsitta monachus is a small Neotropical parrot (Psittaciformes: Arini Tribe) from subtropical and temperate regions of South America. It has a diploid chromosome number 2n = 48, different from other members of the Arini Tribe that have usually 70 chromosomes. The species has the lowest 2n within the Arini Tribe. In this study, we combined comparative chromosome painting with probes generated from chromosomes of Gallus gallus and Leucopternis albicollis, and FISH with bacterial artificial chromosomes (BACs) selected from the genome library of G. gallus with the aim to shed light on the dynamics of genome reorganization in M. monachus in the phylogenetic context. The homology maps showed a great number of fissions in macrochromosomes, and many fusions between microchromosomes and fragments of macrochromosomes. Our phylogenetic analysis by Maximum Parsimony agree with molecular data, placing M. monachus in a basal position within the Arini Tribe, together with Amazona aestiva (short tailed species). In M. monachus many chromosome rearrangements were found to represent autopomorphic characters, indicating that after this species split as an independent branch, an intensive karyotype reorganization took place. In addition, our results show that M. monachus probes generated by flow cytometry provide novel cytogenetic tools for the detection of avian chromosome rearrangements, since this species presents breakpoints that have not been described in other species.

15.
Genet Mol Biol ; 43(3): e20200018, 2020.
Article in English | MEDLINE | ID: mdl-32542304

ABSTRACT

Cytogenetic analyses of the Suboscines species are still scarce, and so far, there is no karyotype description of any species belonging to the family Conopophagidae. Thus, the aim of this study is to describe and analyze the karyotype of Conopophaga lineata by chromosome painting using Gallus gallus (GGA) probes and to identify the location of the 18/28S rDNA cluster. Metaphases were obtained from fibroblast culture from two individuals of C. lineata. We observed a diploid number of 2n=78. GGA probes showed that most ancestral syntenies are conserved, except for the fission of GGA1 and GGA2, into two distinct pairs each. We identified the location of 18S rDNA genes in a pair of microchromosomes. The fission of the syntenic group corresponding to GGA2 was observed in other Furnariida, and hence may correspond to a chromosomal synapomorphy for the species of Parvorder Furnariida.

16.
PLoS One ; 15(5): e0232509, 2020.
Article in English | MEDLINE | ID: mdl-32469879

ABSTRACT

The Cuckoos have a long history of difficult classification. The species of this order have been the subject of several studies based on osteology, behavior, ecology, morphology and molecular data. Despite this, the relationship between Cuculiformes and species of other orders remains controversial. In this work, two species of Cuculidae, Guira guira (Gmelin, 1788) and Piaya cayana (Linnaeus, 1766), were analyzed by means of comparative chromosome painting in order to study the chromosome evolution of this group and to undertake the first chromosome mapping of these species. Our results demonstrate high chromosomal diversity, with 2n = 76 in G. guira, with fission and fusion events involving ancestral syntenies, while P. cayana presented only fissions, which were responsible for the high diploid number of 2n = 90. Interestingly, there were no chromosomal rearrangements in common between these species. Our results, based on Giemsa staining, were compared with previous data for other cuckoos and also with taxa proposed as sister-groups of Cuculiformes (Otidiformes, Musophagiformes and Opisthocomiformes). Cytogenetic comparisons demonstrated that cuckoo species can be divided into at least three major groups. In addition, we found no evidence to place Cuculiformes close to the groups proposed previously as sister-groups.


Subject(s)
Birds/classification , Birds/genetics , Chromosomes/genetics , Animals , Biological Evolution , Chromosome Mapping , Chromosome Painting , Evolution, Molecular , Female , In Situ Hybridization, Fluorescence , Karyotype , Male , Phylogeny , Species Specificity , Synteny
17.
Int J Mol Sci ; 21(7)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244440

ABSTRACT

Comparative chromosome-painting analysis among highly rearranged karyotypes of Sigmodontinae rodents (Rodentia, Cricetidae) detects conserved syntenic blocks, which are proposed as chromosomal signatures and can be used as phylogenetic markers. In the Akodontini tribe, the molecular topology (Cytb and/or IRBP) shows five low-supported clades (divisions: "Akodon", "Bibimys", "Blarinomys", "Oxymycterus", and "Scapteromys") within two high-supported major clades (clade A: "Akodon", "Bibimys", and "Oxymycterus"; clade B: "Blarinomys" and "Scapteromys"). Here, we examine the chromosomal signatures of the Akodontini tribe by using Hylaeamys megacephalus (HME) probes to study the karyotypes of Oxymycterus amazonicus (2n = 54, FN = 64) and Blarinomys breviceps (2n = 28, FN = 50), and compare these data with those from other taxa investigated using the same set of probes. We strategically employ the chromosomal signatures to elucidate phylogenetic relationships among the Akodontini. When we follow the evolution of chromosomal signature states, we find that the cytogenetic data corroborate the current molecular relationships in clade A nodes. We discuss the distinct events that caused karyotypic variability in the Oxymycterus and Blarinomys genera. In addition, we propose that Blarinomys may constitute a species complex, and that the taxonomy should be revised to better delimit the geographical boundaries and their taxonomic status.


Subject(s)
Karyotype , Phylogeny , Rodentia/classification , Rodentia/genetics , Animals , Biological Evolution , Brazil , Chromosome Painting , Cytogenetics/methods , Geography , Karyotyping , Male , Sigmodontinae/classification , Sigmodontinae/genetics , Synteny
18.
Genes (Basel) ; 11(3)2020 03 13.
Article in English | MEDLINE | ID: mdl-32183220

ABSTRACT

Gruiformes is a group with phylogenetic issues. Recent studies based on mitochondrial and genomic DNA have proposed the existence of a core Gruiformes, consisting of five families: Heliornithidae, Aramidae, Gruidae, Psophiidae and Rallidae. Karyotype studies on these species are still scarce, either by conventional staining or molecular cytogenetics. Due to this, this study aimed to analyze the karyotype of two species (Aramides cajaneus and Psophia viridis) belonging to families Rallidae and Psopiidae, respectively, by comparative chromosome painting. The results show that some chromosome rearrangements in this group have different origins, such as the association of GGA5/GGA7 in A. cajaneus, as well as the fission of GGA4p and association GGA6/GGA7, which place P. viridis close to Fulica atra and Gallinula chloropus. In addition, we conclude that the common ancestor of the core Gruiformes maintained the original syntenic groups found in the putative avian ancestral karyotype.


Subject(s)
Birds/genetics , Evolution, Molecular , Phylogeny , Synteny/genetics , Animals , Biological Evolution , Chromosome Painting/methods , Humans , Karyotype , Karyotyping
19.
Genet Mol Biol ; 43(1): e20190236, 2020.
Article in English | MEDLINE | ID: mdl-32105288

ABSTRACT

The order Charadriiformes comprises three major clades: Lari and Scolopaci as sister group to Charadrii. Until now, only three Charadriiformes species have been studied by chromosome painting: Larus argentatus (Lari), Burhinus oedicnemus and Vanellus chilensis (Charadrii). Hence, there is a lack of information concerning the third clade, Scolapaci. Based on this, and to gain a better understanding of karyotype evolution in the order Charadriiformes, we applied conventional and molecular cytogenetic approaches in a species belonging to clade Scolopaci - the wattled jacana (Jacana jacana) - using Gallus gallus and Zenaida auriculata chromosome-specific probes. Cross-species evaluation of J. jacana chromosomes shows extensive genomic reshuffling within macrochromosomes during evolution, with multiple fission and fusion events, although the diploid number remains at high level (2n=82). Interestingly, this species does not have the GGA7-8 fusion, which was found in two representatives of Charadrii clade, reinforcing the idea that this fusion may be exclusive to the Charadrii clade. In addition, it is shown that the chromosome evolution in Charadriiformes is complex and resulted in species with typical and atypical karyotypes. The karyotypic features of Scolopaci are very different from those of Charadrii and Lari, indicating that after divergence, each suborder has undergone different chromosome rearrangements.

20.
Genet Mol Biol ; 43(4): e20200162, 2020.
Article in English | MEDLINE | ID: mdl-33410454

ABSTRACT

Hummingbirds (Trochilidae) are one of the most enigmatic avian groups, and also among the most diverse, with approximately 360 recognized species in 106 genera, of which 43 are monotypic. This fact has generated considerable interest in the evolutionary biology of the hummingbirds, which is reflected in a number of DNA-based studies. However, only a few of them explored chromosomal data. Given this, the present study provides an analysis of the karyotypes of three species of Neotropical hummingbirds, Anthracothorax nigricollis (ANI), Campylopterus largipennis (CLA), and Hylocharis chrysura (HCH), in order to analyze the chromosomal processes associated with the evolution of the Trochilidae. The diploid number of ANI is 2n=80 chromosomes, while CLA and HCH have identical karyotypes, with 2n=78. Chromosome painting with Gallus gallus probes (GGA1-12) shows that the hummingbirds have a karyotype close to the proposed ancestral bird karyotype. Despite this, an informative rearrangement was detected: an in-tandem fusion between GGA7 and GGA9 found in CLA and HCH, but absent in ANI. A comparative analysis with the tree of life of the hummingbirds indicated that this fusion must have arisen following the divergence of a number of hummingbird species.

SELECTION OF CITATIONS
SEARCH DETAIL