Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 10(1): 7981, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32409745

ABSTRACT

In real paramagnets, there is always a subtle many-body contribution to the system's energy, which can be regarded as a small effective local magnetic field (Bloc). Usually, it is neglected, since it is very small when compared with thermal fluctuations and/or external magnetic fields (B). Nevertheless, as both the temperature (T) → 0 K and B → 0 T, such many-body contributions become ubiquitous. Here, employing the magnetic Grüneisen parameter (Γmag) and entropy arguments, we report on the pivotal role played by the mutual interactions in the regime of ultra-low-T and vanishing B. Our key results are: i) absence of a genuine zero-field quantum phase transition due to the presence of Bloc; ii) connection between the canonical definition of temperature and Γmag; and iii) possibility of performing adiabatic magnetization by only manipulating the mutual interactions. Our findings unveil unprecedented aspects emerging from the mutual interactions.

2.
Sci Rep ; 9(1): 12006, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31427698

ABSTRACT

We use the recently-proposed compressible cell Ising-like model to estimate the ratio between thermal expansivity and specific heat (the Grüneisen parameter Γs) in supercooled water. Near the critical pressure and temperature, Γs becomes significantly sensitive to thermal fluctuations of the order-parameter, a characteristic behavior of pressure-induced critical points. Such enhancement of Γs indicates that two energy scales are governing the system, namely the coexistence of high- and low-density liquids, which become indistinguishable at the critical point in the supercooled phase. The temperature dependence of the compressibility, sound velocity and pseudo-Grüneisen parameter Γw are also reported. Our findings support the proposed liquid-liquid critical point in supercooled water in the No-Man's Land regime, and indicates possible applications of this model to other systems. In particular, an application of the model to the qualitative behavior of the Ising-like nematic phase in Fe-based superconductors is also presented.

SELECTION OF CITATIONS
SEARCH DETAIL