Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Microbiol Resour Announc ; 12(9): e0048923, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37526441

ABSTRACT

We report the complete genome sequence of Rhizobium leguminosarum bv. viciae SRDI969, an acid-tolerant, efficient nitrogen-fixing microorganism of Vicia faba. The 6.8 Mbp genome consists of a chromosome and four plasmids, with the symbiosis and nitrogen fixation genes encoded on the chromosome.

2.
Plant Soil ; 487(1-2): 61-77, 2023.
Article in English | MEDLINE | ID: mdl-37333056

ABSTRACT

Background and Aims: Inoculation of legumes with effective N2-fixing rhizobia is a common practice to improve farming profitability and sustainability. To succeed, inoculant rhizobia must overcome competition for nodulation by resident soil rhizobia that fix N2 ineffectively. In Kenya, where Phaseolus vulgaris (common bean) is inoculated with highly effective Rhizobium tropici CIAT899 from Colombia, response to inoculation is low, possibly due to competition from ineffective resident soil rhizobia. Here, we evaluate the competitiveness of CIAT899 against diverse rhizobia isolated from cultivated Kenyan P. vulgaris. Methods: The ability of 28 Kenyan P. vulgaris strains to nodulate this host when co-inoculated with CIAT899 was assessed. Rhizosphere competence of a subset of strains and the ability of seed inoculated CIAT899 to nodulate P. vulgaris when sown into soil with pre-existing populations of rhizobia was analyzed. Results: Competitiveness varied widely, with only 27% of the test strains more competitive than CIAT899 at nodulating P. vulgaris. While competitiveness did not correlate with symbiotic effectiveness, five strains were competitive against CIAT899 and symbiotically effective. In contrast, rhizosphere competence strongly correlated with competitiveness. Soil rhizobia had a position-dependent numerical advantage, outcompeting seed-inoculated CIAT899 for nodulation of P. vulgaris, unless the resident strain was poorly competitive. Conclusion: Suboptimally effective rhizobia can outcompete CIAT899 for nodulation of P. vulgaris. If these strains are widespread in Kenyan soils, they may largely explain the poor response to inoculation. The five competitive and effective strains characterized here are candidates for inoculant development and may prove better adapted to Kenyan conditions than CIAT899.

3.
Theor Appl Genet ; 136(6): 138, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37233825

ABSTRACT

KEY MESSAGE: The vacuolar processing enzyme gene TaVPE3cB is identified as a candidate gene for a QTL of wheat pith-thickness on chromosome 3B by BSR-seq and differential expression analyses. The high pith-thickness (PT) of the wheat stem could greatly enhance stem mechanical strength, especially the basal internodes which support the heavier upper part, such as upper stems, leaves and spikes. A QTL for PT in wheat was previously discovered on 3BL in a double haploid population of 'Westonia' × 'Kauz'. Here, a bulked segregant RNA-seq analysis was applied to identify candidate genes and develop associated SNP markers for PT. In this study, we aimed at screening differentially expressed genes (DEGs) and SNPs in the 3BL QTL interval. Sixteen DEGs were obtained based on BSR-seq and differential expression analyses. Twenty-four high-probability SNPs in eight genes were identified by comparing the allelic polymorphism in mRNA sequences between the high PT and low PT samples. Among them, six genes were confirmed to be associated with PT by qRT-PCR and sequencing. A putative vacuolar processing enzyme gene TaVPE3cB was screened out as a potential PT candidate gene in Australian wheat 'Westonia'. A robust SNP marker associated with TaVPE3cB was developed, which can assist in the introgression of TaVPE3cB.b in wheat breeding programs. In addition, we also discussed the function of other DEGs which may be related to pith development and programmed cell death (PCD). A five-level hierarchical regulation mechanism of stem pith PCD in wheat was proposed.


Subject(s)
Plant Breeding , Triticum , Chromosome Mapping , Triticum/genetics , Triticum/metabolism , Australia , Polymorphism, Single Nucleotide
4.
Plants (Basel) ; 12(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37176811

ABSTRACT

To improve the yield and quality of wheat is of great importance for food security worldwide. One of the most effective and significant approaches to achieve this goal is to enhance the nitrogen use efficiency (NUE) in wheat. In this review, a comprehensive understanding of the factors involved in the process of the wheat nitrogen uptake, assimilation and remobilization of nitrogen in wheat were introduced. An appropriate definition of NUE is vital prior to its precise evaluation for the following gene identification and breeding process. Apart from grain yield (GY) and grain protein content (GPC), the commonly recognized major indicators of NUE, grain protein deviation (GPD) could also be considered as a potential trait for NUE evaluation. As a complex quantitative trait, NUE is affected by transporter proteins, kinases, transcription factors (TFs) and micro RNAs (miRNAs), which participate in the nitrogen uptake process, as well as key enzymes, circadian regulators, cross-talks between carbon metabolism, which are associated with nitrogen assimilation and remobilization. A series of quantitative genetic loci (QTLs) and linking markers were compiled in the hope to help discover more efficient and useful genetic resources for breeding program. For future NUE improvement, an exploration for other criteria during selection process that incorporates morphological, physiological and biochemical traits is needed. Applying new technologies from phenomics will allow high-throughput NUE phenotyping and accelerate the breeding process. A combination of multi-omics techniques and the previously verified QTLs and molecular markers will facilitate the NUE QTL-mapping and novel gene identification.

5.
Funct Plant Biol ; 50(5): 378-389, 2023 05.
Article in English | MEDLINE | ID: mdl-36973638

ABSTRACT

Growing a high-value crop such as industrial hemp (Cannabis sativa L.) in post-mining environments is economically and environmentally attractive but faces a range of biotic and abiotic challenges. An opportunity to investigate the cultivation of C. sativa presented itself as part of post-mining activities on Christmas Island (Australia) to profitably utilise disused phosphate (PS) quarries. Challenges to plant growth and cadmium (Cd) uptake were addressed in this study using potted plants under fully controlled conditions in a growth chamber. A complete nutritional spectrum, slow-release fertiliser was applied to all plants as a control treatment, and two levels of rock PS dust, a waste product of PS mining that contains 35% phosphorus (P) and 40ppm of naturally occurring Cd, were applied at 54 and 162gL-1 . After 12weeks, control plants (no PS dust) significantly differed in phenological development, with no flower production, lower aboveground biomass and reduced photosynthesis efficiency than those with P applied as rock dust. Compared with the controls, the 54gL-1 level of P dust increased shoot biomass by 38%, while 162gL-1 increased shoot biomass by 85%. The concentration of Δ9 -tetrahydrocannabinol also increased with the higher P levels. Cd uptake from PS dust by C. sativa was substantial and warrants further investigation. However, there was no increase in Cd content between the 54 and 162gL-1 application rates in seed and leaf. Results indicate that hemp could become a high-value crop on Christmas Island, with the readily available rock PS dust providing a source of P.


Subject(s)
Cannabinoids , Cannabis , Cannabis/physiology , Phosphates , Cadmium , Dust , Tropical Climate
6.
J Cannabis Res ; 4(1): 51, 2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36138416

ABSTRACT

BACKGROUND: Hemp (Cannabis sativa L.) is a producer of cannabinoids. These organic compounds are of increasing interest due to their potential applications in the medicinal field. Advances in analytical methods of identifying and quantifying these molecules are needed. METHOD: This study describes a new method of cannabinoid separation from plant material using gas chromatography-mass spectrometry (GC-MS) as the analytical tool to detect low abundance cannabinoids that will likely have implications for future therapeutical treatments. A novel approach was adopted to separate trichomes from plant material to analyse cannabinoids of low abundance not observed in raw plant extract. Required plant sample used for analysis was greatly reduced compared to other methods. Derivatisation method was simplified and deconvolution software was utilised to recognise unknown cannabinoid compounds of low abundance. RESULTS: The method produces well-separated spectra and allows the detection of major and minor cannabinoids. Ten cannabinoids that had available standards could be identified and quantified and numerous unidentified cannabinoids or pathway intermediates based on GC-MS spectra similarities could be extracted and analysed simultaneously with this method. CONCLUSIONS: This is a rapid novel extraction and analytical method from plant material that can identify major and minor cannabinoids using a simple technique. The method will be of use to future researchers seeking to study the multitude of cannabinoids whose values are currently not understood.

7.
Article in English | MEDLINE | ID: mdl-35796350

ABSTRACT

Bradyrhizobium is a heterogeneous bacterial genus capable of establishing symbiotic associations with a broad range of legume hosts, including species of economic and environmental importance. This study was focused on the taxonomic and symbiovar definition of four strains - CNPSo 4026T, WSM 1704T, WSM 1738T and WSM 4400T - previously isolated from nodules of legumes in Western Australia and South Africa. The 16S rRNA gene phylogenetic tree allocated the strains to the Bradyrhizobium elkanii supergroup. The multilocus sequence analysis (MLSA) with partial sequences of six housekeeping genes - atpD, dnaK, glnII, gyrB, recA and rpoB - did not cluster the strains under study as conspecific to any described Bradyrhizobium species. Average nucleotide identity and digital DNA-DNA hybridization values were calculated for the four strains of this study and the closest species according to the MLSA phylogeny with the highest values being 95.46 and 62.20 %, respectively; therefore, both being lower than the species delineation cut-off values. The nodC and nifH phylogenies included strains WSM 1738T and WSM 4400T in the symbiovars retamae and vignae respectively, and also allowed the definition of three new symbiovars, sv. cenepequi, sv. glycinis, and sv. cajani. Analysis of morphophysiological characterization reinforced the identification of four novel proposed Bradyrhizobium species that are accordingly named as follows: Bradyrhizobium cenepequi sp. nov. (CNPSo 4026T=WSM 4798T=LMG 31653T), isolated from Vigna unguiculata; Bradyrhizobium semiaridum sp. nov. (WSM 1704T=CNPSo 4028T=LMG 31654T), isolated from Tephrosia gardneri; Bradyrhizobium hereditatis sp. nov. (WSM 1738T=CNPSo 4025T=LMG 31652T), isolated from Indigofera sp.; and Bradyrhizobium australafricanum sp. nov. (WSM 4400T=CNPSo 4015T=LMG 31648T) isolated from Glycine sp.


Subject(s)
Bradyrhizobium , Fabaceae , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fabaceae/microbiology , Fatty Acids/chemistry , Genes, Bacterial , Phylogeny , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant/microbiology , Sequence Analysis, DNA , South Africa , Vegetables , Western Australia
8.
Appl Environ Microbiol ; 87(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33355157

ABSTRACT

Rhizobia are soil bacteria capable of forming N2-fixing symbioses with legumes, with highly effective strains often selected in agriculture as inoculants to maximize symbiotic N2 fixation. When rhizobia in the genus Mesorhizobium have been introduced with exotic legumes into farming systems, horizontal transfer of symbiosis Integrative and Conjugative Elements (ICEs) from the inoculant strain to soil bacteria has resulted in the evolution of ineffective N2-fixing rhizobia that are competitive for nodulation with the target legume. In Australia, Cicer arietinum (chickpea) has been inoculated since the 1970's with Mesorhizobium ciceri sv. ciceri CC1192, a highly effective strain from Israel. Although the full genome sequence of this organism is available, little is known about the mobility of its symbiosis genes and the diversity of cultivated C. arietinum-nodulating organisms. Here, we show the CC1192 genome harbors a 419-kb symbiosis ICE (ICEMcSym1192) and a 648-kb repABC-type plasmid pMC1192 carrying putative fix genes. We sequenced the genomes of 11 C. arietinum nodule isolates from a field site exclusively inoculated with CC1192 and showed they were diverse unrelated Mesorhizobium carrying ICEMcSym1192, indicating they had acquired the ICE by environmental transfer. No exconjugants harboured pMc1192 and the plasmid was not essential for N2 fixation in CC1192. Laboratory conjugation experiments confirmed ICEMcSym1192 is mobile, integrating site-specifically within the 3' end of one of the four ser-tRNA genes in the R7ANS recipient genome. Strikingly, all ICEMcSym1192 exconjugants were as efficient at fixing N2 with C. arietinum as CC1192, demonstrating ICE transfer does not necessarily yield ineffective microsymbionts as previously observed.Importance Symbiotic N2 fixation is a key component of sustainable agriculture and in many parts of the world legumes are inoculated with highly efficient strains of rhizobia to maximise fixed N2 inputs into farming systems. Symbiosis genes for Mesorhizobium spp. are often encoded chromosomally within mobile gene clusters called Integrative and Conjugative Elements or ICEs. In Australia, where all agricultural legumes and their rhizobia are exotic, horizontal transfer of ICEs from inoculant Mesorhizobium strains to native rhizobia has led to the evolution of inefficient strains that outcompete the original inoculant, with the potential to render it ineffective. However, the commercial inoculant strain for Cicer arietinum (chickpea), M. ciceri CC1192, has a mobile symbiosis ICE (ICEMcSym1192) which can support high rates of N2 fixation following either environmental or laboratory transfer into diverse Mesorhizobium backgrounds, demonstrating ICE transfer does not necessarily yield ineffective microsymbionts as previously observed.

9.
Int J Syst Evol Microbiol ; 70(8): 4623-4636, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32667875

ABSTRACT

The genus Bradyrhizobium is considered as the probable ancestor lineage of all rhizobia, broadly spread in a variety of ecosystems and with remarkable diversity. A polyphasic study was performed to characterize and clarify the taxonomic position of eight bradyrhizobial strains isolated from indigenous legumes to Western Australia. As expected for the genus, the 16S rRNA gene sequences were highly conserved, but the results of multilocus sequence analysis with four housekeeping genes (dnaK, glnII, gyrB and recA) confirmed three new distinct clades including the following strains: (1) WSM 1744T, WSM 1736 and WSM 1737; (2) WSM 1791T and WSM 1742; and (3) WSM 1741T, WSM 1735 and WSM 1790. The highest ANI values of the three groups in relation to the closest type strains were 92.4, 92.3 and 93.3 %, respectively, below the threshold of species circumscription. The digital DNA-DNA hybridization analysis also confirmed new species descriptions, with less than 52 % relatedness with the closest type strains. The phylogeny of the symbiotic gene nodC clustered the eight strains into the symbiovar retamae, together with seven Bradyrhizobium type strains, sharing from 94.2-98.1 % nucleotide identity (NI), and less than 88.7 % NI with other related strains and symbiovars. Morpho-physiological, phylogenetics, genomic and symbiotic traits were determined for the new groups and our data support the description of three new species, Bradyrhizobium archetypum sp. nov., Bradyrhizobium australiense sp. nov. and Bradyrhizobium murdochi sp. nov., with WSM 1744T (=CNPSo 4013T=LMG 31646T), WSM 1791T (=CNPSo 4014T=LMG 31647T) and WSM 1741T (=CNPSo 4020T=LMG 31651T) designated as type strains, respectively.


Subject(s)
Bradyrhizobium/classification , Fabaceae/microbiology , Phylogeny , Root Nodules, Plant/microbiology , Bacterial Typing Techniques , Base Composition , Bradyrhizobium/isolation & purification , DNA, Bacterial/genetics , Genes, Bacterial , Multilocus Sequence Typing , Nitrogen Fixation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Western Australia
10.
Syst Appl Microbiol ; 43(2): 126053, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31937424

ABSTRACT

Bradyrhizobium are N2-fixing microsymbionts of legumes with relevant applications in agricultural sustainability, and we investigated the phylogenetic relationships of conserved and symbiotic genes of 21 bradyrhizobial strains. The study included strains from Western Australia (WA), isolated from nodules of Glycine spp. the country is one genetic center for the genus and from nodules of other indigenous legumes grown in WA, and strains isolated from forage Glycine sp. grown in South Africa. The 16S rRNA phylogeny divided the strains in two superclades, of B. japonicum and B. elkanii, but with low discrimination among the species. The multilocus sequence analysis (MLSA) with four protein-coding housekeeping genes (dnaK, glnII, gyrB and recA) pointed out seven groups as putative new species, two within the B. japonicum, and five within the B. elkanii superclades. The remaining eleven strains showed higher similarity with six species, B. lupini, B. liaoningense, B. yuanmingense, B. subterraneum, B. brasilense and B. retamae. Phylogenetic analysis of the nodC symbiotic gene clustered 13 strains in three different symbiovars (sv. vignae, sv. genistearum and sv. retamae), while seven others might compose new symbiovars. The genetic profiles of the strains evaluated by BOX-PCR revealed high intra- and interspecific diversity. The results point out the high level of diversity still to be explored within the Bradyrhizobium genus, and further studies might confirm new species and symbiovars.


Subject(s)
Bradyrhizobium/classification , Bradyrhizobium/genetics , Phylogeny , Bacterial Proteins/genetics , Bradyrhizobium/isolation & purification , DNA, Bacterial/genetics , Fabaceae/microbiology , Genes, Essential/genetics , Genetic Variation , Genome, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant/microbiology , Sequence Analysis, DNA , South Africa , Symbiosis/genetics , Western Australia
11.
Article in English | MEDLINE | ID: mdl-33709900

ABSTRACT

Strains of the genus Bradyrhizobium associated with agronomically important crops such as soybean (Glycine max) are increasingly studied; however, information about symbionts of wild Glycine species is scarce. Australia is a genetic centre of wild Glycine species and we performed a polyphasic analysis of three Bradyrhizobium strains-CNPSo 4010T, CNPSo 4016T, and CNPSo 4019T-trapped from Western Australian soils with Glycine clandestina, Glycine tabacina and Glycine max, respectively. The phylogenetic tree of the 16S rRNA gene clustered all strains into the Bradyrhizobium japonicum superclade; strains CNPSo 4010T and CNPSo 4016T had Bradyrhizobium yuanmingense CCBAU 10071T as the closest species, whereas strain CNPSo 4019T was closer to Bradyrhizobium liaoningense LMG 18230T. The multilocus sequence analysis (MLSA) with five housekeeping genes-dnaK, glnII, gyrB, recA and rpoB-confirmed the same clusters as the 16S rRNA phylogeny, but indicated low similarity to described species, with nucleotide identities ranging from 93.6 to 97.6% of similarity. Considering the genomes of the three strains, the average nucleotide identity and digital DNA-DNA hybridization values were lower than 94.97 and 59.80 %, respectively, with the closest species. In the nodC phylogeny, strains CNPSo 4010T and CNPSo 4019T grouped with Bradyrhizobium zhanjiangense and Bradyrhizobium ganzhouense, respectively, while strain CNPSo 4016T was positioned separately from the all symbiotic Bradyrhizobium species. Other genomic (BOX-PCR), phenotypic and symbiotic properties were evaluated and corroborated with the description of three new lineages of Bradyrhizobium. We propose the names of Bradyrhizobium agreste sp. nov. for CNPSo 4010T (=WSM 4802T=LMG 31645T) isolated from Glycine clandestina, Bradyrhizobium glycinis sp. nov. for CNPSo 4016T (=WSM 4801T=LMG 31649T) isolated from Glycine tabacina and Bradyrhizobium diversitatis sp. nov. for CNPSo 4019T (=WSM 4799T=LMG 31650T) isolated from G. max.

12.
Syst Appl Microbiol ; 41(6): 641-649, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30145046

ABSTRACT

Given that phosphate supplies may diminish and become uneconomic to mine after 2020, there is a compelling need to develop alternative industries to support the population on Christmas Island. Former mine sites could be turned into productive agricultural land, however, large-scale commercial agriculture has never been attempted, and, given the uniqueness of the island, the diversity of rhizobia prior to introducing legumes needed evaluation. Therefore, 84 rhizobia isolates were obtained from nine different hosts, both crop and introduced legumes, located at seven sites across the island. Based on 16S rRNA and recA gene sequence analysis, the isolates grouped into 13 clades clustering within the genus Bradyrhizobium, Ensifer, Cupriavidus and Rhizobium. According to the sequences of their symbiosis genes nodC and nifH, the isolates were classified into 12 and 11 clades, respectively, and clustered closest to tropical or crop legume isolates. Moreover, the symbiosis gene phylogeny and Multi Locus Sequence Analysis gene phylogeny suggested vertical transmission in the Alpha-rhizobia but horizontal transmission within the Beta-rhizobia. Furthermore, this study provides evidence of a large diversity of endemic rhizobia associated with both crop and introduced legumes, and highlights the necessity of inoculation for common bean, chickpea and soybean on the Island.


Subject(s)
Bradyrhizobiaceae/classification , Fabaceae/microbiology , Mining , Rhizobiaceae/classification , Root Nodules, Plant/microbiology , Agriculture , Australia , Bradyrhizobiaceae/genetics , Bradyrhizobiaceae/isolation & purification , DNA, Bacterial/genetics , Genes, Bacterial , Phosphates , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhizobiaceae/genetics , Rhizobiaceae/isolation & purification , Symbiosis
13.
PLoS Genet ; 14(3): e1007292, 2018 03.
Article in English | MEDLINE | ID: mdl-29565971

ABSTRACT

Tripartite integrative and conjugative elements (ICE3) are a novel form of ICE that exist as three separate DNA regions integrated within the genomes of Mesorhizobium spp. Prior to conjugative transfer the three ICE3 regions of M. ciceri WSM1271 ICEMcSym1271 combine and excise to form a single circular element. This assembly requires three coordinated recombination events involving three site-specific recombinases IntS, IntG and IntM. Here, we demonstrate that three excisionases-or recombination directionality factors-RdfS, RdfG and RdfM are required for ICE3 excision. Transcriptome sequencing revealed that expression of ICE3 transfer and conjugation genes was induced by quorum sensing. Quorum sensing activated expression of rdfS, and in turn RdfS stimulated transcription of both rdfG and rdfM. Therefore, RdfS acts as a "master controller" of ICE3 assembly and excision. The dependence of all three excisive reactions on RdfS ensures that ICE3 excision occurs via a stepwise sequence of recombination events that avoids splitting the chromosome into a non-viable configuration. These discoveries expose a surprisingly simple control system guiding molecular assembly of these novel and complex mobile genetic elements and highlight the diverse and critical functions of excisionase proteins in control of horizontal gene transfer.


Subject(s)
Mesorhizobium/genetics , Recombination, Genetic , Amino Acid Sequence , Chromosomes, Bacterial , DNA Nucleotidyltransferases/metabolism , Gene Transfer, Horizontal , Genes, Bacterial , High-Throughput Nucleotide Sequencing , Quorum Sensing , RNA, Bacterial/genetics , Real-Time Polymerase Chain Reaction , Viral Proteins/metabolism
14.
Syst Appl Microbiol ; 41(4): 291-299, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29571921

ABSTRACT

Phaseolus vulgaris (common bean) was introduced to Kenya several centuries ago but the rhizobia that nodulate it in the country remain poorly characterised. To address this gap in knowledge, 178 isolates recovered from the root nodules of P. vulgaris cultivated in Kenya were genotyped stepwise by the analysis of genomic DNA fingerprints, PCR-RFLP and 16S rRNA, atpD, recA and nodC gene sequences. Results indicated that P. vulgaris in Kenya is nodulated by at least six Rhizobium genospecies, with most of the isolates belonging to Rhizobium phaseoli and a possibly novel Rhizobium species. Infrequently, isolates belonged to Rhizobium paranaense, Rhizobium leucaenae, Rhizobium sophoriradicis and Rhizobium aegyptiacum. Despite considerable core-gene heterogeneity among the isolates, only four nodC gene alleles were observed indicating conservation within this gene. Testing of the capacity of the isolates to fix nitrogen (N2) in symbiosis with P. vulgaris revealed wide variations in effectiveness, with ten isolates comparable to Rhizobium tropici CIAT 899, a commercial inoculant strain for P. vulgaris. In addition to unveiling effective native rhizobial strains with potential as inoculants in Kenya, this study demonstrated that Kenyan soils harbour diverse P. vulgaris-nodulating rhizobia, some of which formed phylogenetic clusters distinct from known lineages. The native rhizobia differed by site, suggesting that field inoculation of P. vulgaris may need to be locally optimised.


Subject(s)
Phaseolus/microbiology , Rhizobium , Root Nodules, Plant/microbiology , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Kenya , N-Acetylglucosaminyltransferases/genetics , Nitrogen Fixation/physiology , Phylogeny , Plant Root Nodulation/physiology , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Rec A Recombinases/genetics , Rhizobium/classification , Rhizobium/genetics , Rhizobium/isolation & purification , Sequence Analysis, DNA , Soil Microbiology , Symbiosis/genetics , Transcription Factors/genetics
15.
Sci Total Environ ; 625: 1-7, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29278826

ABSTRACT

Globally, land-use transition from mining to agriculture is becoming increasingly attractive and necessary for many reasons. However, low levels of necessary plant nutrients, and high levels of heavy metals, can hamper plant growth, affecting yield, and potentially, food safety. In post-phosphate mining substrates, for example, nitrogen (N) is a key limiting nutrient, and, although legumes are planted prior to cereals, N supplementation is still necessary. We undertook two field trials on Christmas Island, Australia, to determine whether Sorghum bicolor could be grown successfully in a post-phosphate mining substrate. The first trial investigated N (urea) demand (amount of N required for adequate crop growth) for S. bicolor, and whether N addition could reduce the naturally occurring cadmium (Cd) concentrations in the crop. The second trial examined whether slow release nitrogen fertilizers (SRF) could replace urea to increase biomass and reduce Cd concentrations. Our first trial demonstrated that S. bicolor has a high N demand, with the highest biomass being recorded in the 160kg/ha urea treatment. However, plants treated with 80, 120 and 160kg/ha were not significantly different from one another. After 7weeks of growth, leaf Cd concentrations were significantly lower for all urea treatments compared with the control plants. However, after 23weeks, seed Cd concentrations did not differ across treatments. Our second trial demonstrated that the application of SRF (Macracote® and Sulsync®) and 160kg/ha urea significantly increased biomass above the control plants. There was, however, no treatment response in terms of Cd or N concentrations in the seed at final harvest. Thus, we have shown that N is currently critical for S. bicolor, even following legume cropping, and that high biomass and a significant reduction in Cd can be attained with appropriate levels of urea. Our work has important implications for cereal growth and food safety in post-mining agriculture.


Subject(s)
Agriculture , Cadmium/chemistry , Fertilizers , Mining , Sorghum/growth & development , Urea/metabolism , Australia , Phosphates , Soil , Soil Pollutants/chemistry , Sorghum/chemistry
16.
Genome Announc ; 5(35)2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28860254

ABSTRACT

We report here the complete genome sequence of Mesorhizobium ciceri bv. biserrulae strain WSM1497, the efficient nitrogen-fixing microsymbiont and commercial inoculant in Australia of the forage legume Biserrula pelecinus The genome consists of 7.2 Mb distributed across a single chromosome (6.67 Mb) and a single plasmid (0.53 Mb).

17.
Plasmid ; 92: 30-36, 2017 07.
Article in English | MEDLINE | ID: mdl-28669811

ABSTRACT

Integrative and conjugative elements (ICEs) are generally regarded as regions of contiguous DNA integrated within a bacterial genome that are capable of excision and horizontal transfer via conjugation. We recently characterized a unique group of ICEs present in Mesorhizobium spp., which exist as three entirely separate but inextricably linked chromosomal regions termed α, ß and γ. These regions occupy three different recombinase attachment (att) sites; however, they do not excise independently. Rather, they recombine the host chromosome to form a single contiguous region prior to excision and conjugative transfer. Like the single-part ICE carried by M. loti R7A (ICEMlSymR7A), these "tripartite" ICEs (ICE3s) are widespread throughout the Mesorhizobium genus and enable strains to form nitrogen-fixing symbioses with a variety of legumes. ICE3s have likely evolved following recombination between three separate ancestral integrative elements, however, the persistence of ICE3 structure in diverse mesorhizobia is perplexing due to its seemingly unnecessary complexity. In this study, examination of ICE3s revealed that most symbiosis genes are carried on the large α fragment. Some ICE3-ß and γ regions also carry genes that potentially contribute to the symbiosis, or to persistence in the soil environment, but these regions have been frequently subjected to recombination events including deletions, insertions and recombination with genes located on other integrative elements. Examination of a new ICE3 in M. ciceri Ca181 revealed it has jettisoned the genetic cargo from its ß region and recruited a serine recombinase gene within its γ region, resulting in replacement of one of the three ICE3 integration sites. Overall the recombination loci appear to be the only conserved features of the ß and γ regions, suggesting that the tripartite structure itself provides a selective benefit to the element. We propose the ICE3 structure provides enhanced host range, host stability and resistance to destabilization by tandem insertion of competing integrative elements. Furthermore, we suspect the ICE3 tripartite structure increases the likelihood of gene capture from integrative elements sharing the same attachment sites.


Subject(s)
Conjugation, Genetic , DNA Transposable Elements , Evolution, Molecular , Base Sequence , Genomic Islands , Mesorhizobium/genetics , Plants/microbiology , Recombination, Genetic , Symbiosis
18.
Arch Microbiol ; 199(5): 657-664, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28180951

ABSTRACT

Thirteen Gram-negative, aerobic, motile with polar flagella, rod-shaped bacteria were isolated from root nodules of Centrolobium paraense Tul. grown in soils from the Amazon region of Brazil. Growth of strains was observed at temperature range 20-36 °C (optimal 28 °C), pH ranges 5-11 (optimal 6.0-7.0), and 0.1-0.5%NaCl (optimal 0.1-0.3%). Analysis of 16S rRNA gene placed the strains into two groups within Bradyrhizobium. Closest neighbouring species (98.8%) for group I was B. neotropicale while for group II were 12 species with more than 99% of similarity. Multi-locus sequence analysis (MLSA) with dnaK, glnII, recA, and rpoB confirmed B. neotropicale BR 10247T as the closest type strain for the group I and B. elkanii USDA 76T and B. pachyrhizi PAC 48T for group II. Average Nucleotide Identity (ANI) differentiated group I from the B. neotropicale BR 10247T (79.6%) and group II from B. elkanii USDA 76T and B. pachyrhizi PAC 48T (88.1% and 87.9%, respectively). Fatty acid profiles [majority C16:0 and Summed feature 8 (18:1ω6c/18:1ω7c) for both groups], DNA G + C content, and carbon compound utilization supported the placement of the novel strains in the genus Bradyrhizobium. Gene nodC and nifH of the new strains have in general low similarity with other Bradyrhizobium species. Both groups nodulated plants from the tribes Crotalarieae, Dalbergiae, Genisteae, and Phaseoleae. Based on the presented data, two novel species which the names Bradyrhizobium centrolobii and Bradyrhizobium macuxiense are proposed, with BR 10245T (=HAMBI 3597T) and BR 10303T (=HAMBI 3602T) as the respective-type strains.


Subject(s)
Bradyrhizobium , Fabaceae/microbiology , Root Nodules, Plant/microbiology , Bacterial Proteins/genetics , Base Composition/genetics , Bradyrhizobium/classification , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , Brazil , DNA, Bacterial/genetics , Fatty Acids/chemistry , Multilocus Sequence Typing , N-Acetylglucosaminyltransferases/genetics , Nitrogen Fixation/genetics , Nitrogen Fixation/physiology , Nucleic Acid Hybridization , Oxidoreductases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil , Soil Microbiology
19.
Proc Natl Acad Sci U S A ; 113(43): 12268-12273, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27733511

ABSTRACT

Integrative and conjugative elements (ICEs) are ubiquitous mobile genetic elements present as "genomic islands" within bacterial chromosomes. Symbiosis islands are ICEs that convert nonsymbiotic mesorhizobia into symbionts of legumes. Here we report the discovery of symbiosis ICEs that exist as three separate chromosomal regions when integrated in their hosts, but through recombination assemble as a single circular ICE for conjugative transfer. Whole-genome comparisons revealed exconjugants derived from nonsymbiotic mesorhizobia received three separate chromosomal regions from the donor Mesorhizobium ciceri WSM1271. The three regions were each bordered by two nonhomologous integrase attachment (att) sites, which together comprised three homologous pairs of attL and attR sites. Sequential recombination between each attL and attR pair produced corresponding attP and attB sites and joined the three fragments to produce a single circular ICE, ICEMcSym1271 A plasmid carrying the three attP sites was used to recreate the process of tripartite ICE integration and to confirm the role of integrase genes intS, intM, and intG in this process. Nine additional tripartite ICEs were identified in diverse mesorhizobia and transfer was demonstrated for three of them. The transfer of tripartite ICEs to nonsymbiotic mesorhizobia explains the evolution of competitive but suboptimal N2-fixing strains found in Western Australian soils. The unheralded existence of tripartite ICEs raises the possibility that multipartite elements reside in other organisms, but have been overlooked because of their unusual biology. These discoveries reveal mechanisms by which integrases dramatically manipulate bacterial genomes to allow cotransfer of disparate chromosomal regions.


Subject(s)
DNA Transposable Elements/genetics , Fabaceae/genetics , Gene Transfer, Horizontal/genetics , Recombination, Genetic , Conjugation, Genetic/genetics , Fabaceae/growth & development , Genome, Bacterial , Genomic Islands/genetics , Integrases/genetics , Mesorhizobium/genetics , Mesorhizobium/growth & development , Plasmids , Symbiosis/genetics
20.
Genome Announc ; 4(3)2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27284134

ABSTRACT

We report the complete genome sequence of Mesorhizobium ciceri bv. biserrulae strain WSM1284, a nitrogen-fixing microsymbiont of the pasture legume Biserrula pelecinus The genome consists of 6.88 Mb distributed between a single chromosome (6.33 Mb) and a single plasmid (0.55 Mb).

SELECTION OF CITATIONS
SEARCH DETAIL
...