ABSTRACT
The increase in cultivated areas in tropical zones such as Colombia for avocado cv. Hass and the lack of knowledge on edaphoclimatic relationships with factors associated with quality led to the present research. The aim of this research was to establish the relationship of soil, climatic, spatial factors (plot location), and harvest seasonality (principal and transitory) with the multidimensional quality of avocado cv. Hass planted under tropical conditions. This research was carried out on eight farms located in three producing subregions. Soil, environmental and harvest data were recorded for three years (2015-2017) in each plot. Avocado fruit samples were used to determine the parameters of macronutrient, fatty acids, minerals, and vitamin E. Descriptive, inferential statistics, multivariate analysis, effect size, second-order exponential model, and causal relationships were used to determine variables associated with soil, climate, harvest seasonality, and spatial location, and to determine quality parameters. The results established a relationship between nutritional quality and the origin region. Similarly, it was possible to identify parameters associated with differential quality with a robust statistical methodology to propose origin as a differentiating factor for quality. This study provided useful information for the value chain that selected the best areas for avocado crops according to market expectations and nutritional quality criteria.
ABSTRACT
The low availability of phosphorus (P) in the soil and the high cost of P fertilization are factors that limit agricultural productivity. A biotechnological alternative for to handle this problem is to use soil microorganisms capable of dissolving rock phosphate (RP), thus improving its effectiveness as a P fertilizer. This study was carried out with the objective of determining the effectiveness of Aspergillus niger -As-, Penicillium sp. -Pn-, Bacillus sp -B-. and an unidentified actinomycete -At- in the in vitro dissolution of two partially acidulated rock phosphates. The treatments consisted of 2x16 factorial arrangement [2 levels of RP: either Boyaca RP or Norte de Santander RP; 16 levels of inoculum: an uninoculated control, individual inoculations (with As, Pn, B, At), dual inoculations (AsPn, AsB, AsAt, PnB, PnAt, BAt), triple inoculations (AsPnB, AsPnAt, AsBAt, PnBAt), and quadruple inoculation (AsPnBAt)]. Each treatment was replicated three times. It was found that the microbial effectiveness in the in vitro dissolution of RP depended on the type of RP, the composition of the inoculum used and the interaction of both factors. The best results were obtained with the Norte de Santander RP and A. niger used alone. When this fungus combined with the other microorganisms, its capacity to dissolve RP was significantly reduced.
La baja disponibilidad de fósforo (P) en el suelo y el costo de la fertilización fosfórica son limitantes para la productividad agrícola. Una alternativa biotecnológica para manejar este problema es mediante el uso de microorganismos del suelo capaces de disolver rocas fosfóricas (RP) y así mejorar su efectividad como fertilizante fosfórico. Con este fin se realizó un ensayo para determinar la efectividad microbial en la disolución in vitro de dos RP (Norte de Santander y Boyacá) parcialmente aciduladas. Los tratamientos consistieron en un arreglo factorial 2x16 [2 niveles de RP: Boyacá o Norte de Santander; 16 niveles de inóculo: Un control no inoculado, inóculos individuales (Aspergillus niger -As-, Penicillium sp. -Pn-, Bacillus sp. -B-, y un actinomiceto no identificado -At-), inóculos dobles (AsPn, AsB, AsAt, PnB, PnAt, BAt), inóculos triples (AsPnB, AsPnAt, AsBAt, PnBAt), e inóculos cuádruples (AsPnBAt)]. Cada tratamiento tuvo tres replicas. La efectividad en la disolución in vitro de RP fue dependiente del tipo de RP, tipo de inóculo y la interacción de ambos factores, teniendo mejores resultados con la RP del Norte de Santander y A. niger sólo. Cuando este hongo se combinó con otros microorganismos su capacidad para disolver RP se redujo significativamente.
ABSTRACT
Nutrient dynamics in forest plantations of Azadirachta indica (Meliaceae) established for restoration of degraded lands in Colombia. Azadirachta indica is a tree species which use is steadily increasing for restoration of tropical and subtropical arid and degraded lands throughout the world. The objective of this research study was to evaluate the potential of these plantations as an active restoration model for the recovery of soils under desertification in arid lands of Colombia. Litter traps and litter-bags were installed in twenty 250m2 plots. Green leaves and soil samples inside and outside this species plantations were taken, and their elemental concentrations were determined. Litterfall, leaf litter decomposition and foliar nutrient resorption were monitored for one year. The annual contributions of organic material, such as fine litterfall, represented 557.54kg/ha, a third of which was A. indica leaves. The greatest potential returns of nutrients per foliar litterfall were from Ca (4.6kg/ha) and N (2.4kg/ha), and the smallest potential returns came from P (0.06kg/ha). A total of 68% of the foliar material deposited in litter-bags disappeared after one year. The greatest release of nutrients was that of K (100%), and the least was that of N (40%). P was the most limiting nutrient, with low edaphic availability and high nutrient use efficiency from Vitousek's index (IEV = 3176) and foliar nutrient resorption (35%). Despite these plantations are young, and that they have not had forestry management practices, as an active restoration model, they have revitalized the biogeochemical cycle, positively modifying the edaphic parameters according to the increases in organic material, P and K of 72%, 31% and 61%, respectively. Furthermore, they improved the stability of aggregates and the microbe respiration rates. The forest plantation model with exotic species has been opposed by different sectors; however, it has been acknowledged that these projects derive many benefits for the restoration of biodiversity and ecosystemic functions. The conditions of severe land degradation demand the initial use of species, such as A. indica, that can adapt quickly and successfully, and progressively reestablish the biogeochemical cycle.
Subject(s)
Azadirachta/metabolism , Conservation of Natural Resources/methods , Plant Leaves/metabolism , Soil/chemistry , Trees/metabolism , Biodegradation, Environmental , Colombia , Nitrogen/analysis , Phosphorus/analysisABSTRACT
Azadirachta indica is a tree species which use is steadily increasing for restoration of tropical and subtropical arid and degraded lands throughout the world. The objective of this research study was to evaluate the potential of these plantations as an active restoration model for the recovery of soils under desertification in arid lands of Colombia. Litter traps and litter-bags were installed in twenty 250m² plots. Green leaves and soil samples inside and outside this species plantations were taken, and their elemental concentrations were determined. Litterfall, leaf litter decomposition and foliar nutrient resorption were moni- tored for one year. The annual contributions of organic material, such as fine litterfall, represented 557.54kg/ha, a third of which was A. indica leaves. The greatest potential returns of nutrients per foliar litterfall were from Ca (4.6kg/ha) and N (2.4kg/ha), and the smallest potential returns came from P (0.06kg/ha). A total of 68% of the foliar material deposited in litter-bags disappeared after one year. The greatest release of nutrients was that of K (100%), and the least was that of N (40%). P was the most limiting nutrient, with low edaphic availability and high nutrient use efficiency from Vitousek´s index (IEV=3176) and foliar nutrient resorption (35%). Despite these plantations are young, and that they have not had forestry management practices, as an active restoration model, they have revitalized the biogeochemical cycle, positively modifying the edaphic parameters according to the increases in organic material, P and K of 72%, 31% and 61%, respectively. Furthermore, they improved the stability of aggregates and the microbe respiration rates. The forest plantation model with exotic species has been opposed by different sectors; however, it has been acknowledged that these projects derive many benefits for the restoration of biodiversity and ecosystemic functions. The conditions of severe land degradation demand the initial use of species, such as A. indica, that can adapt quickly and successfully, and progressively reestablish the biogeochemical cycle.
Azadirachta indica A. Juss (Nim) ha sido ampliamente empleada en procedimientos de restauración, por lo tanto se evaluó el potencial de sus plantaciones para restaurar tierras secas degradadas por sobrepastoreo, vía reactivación del ciclo biogeoquímico. En 20 parcelas de 250m², se instalaron trampas de hojarasca y litter-bags. Se tomaron muestras de hojas maduras y de suelos dentro y fuera de las plantaciones, y se determinaron sus contenidos elementales. Fueron monitoreados la caída de hojarasca, la descomposición de hojarasca y la reabsorción de nutrientes foliares durante un año. Los aportes anuales de hojarasca fina representaron 557.54kg/ha (33% hojas de Nim). Los mayores retornos potenciales de nutrientes vía foliar fue- ron de Ca (4.6kg/ha) y N (2.4kg/ha) y los menores de P (0.06kg/ha). El 68% del material se descompuso tras un año. La mayor liberación de nutrientes fue de K (100%) y la menor de N (40%). El P fue el nutriente más limitante, con baja disponibilidad edáfica y alta eficiencia en su uso según el Índice de Vitousek (IEV=3 176) y la reabsorción foliar (35%). Estas plantaciones juveniles demostraron efectividad en la reactivación del ciclo biogeoquímico, que mejoraron parámetros edáficos, según incrementos de materia orgánica, P y K; 72%, 31% y 61%, respectiva- mente. Además mejoraron la estabilidad de agregados y las tasas de respiración microbiana.