Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
FEBS Open Bio ; 13(5): 912-925, 2023 05.
Article in English | MEDLINE | ID: mdl-36906930

ABSTRACT

Imidazole is largely employed in recombinant protein purification, including GH1 ß-glucosidases, but its effect on the enzyme activity is rarely taken into consideration. Computational docking suggested that imidazole interacts with residues forming the active site of the GH1 ß-glucosidase from Spodoptera frugiperda (Sfßgly). We confirmed this interaction by showing that imidazole reduces the activity of Sfßgly, which does not result from enzyme covalent modification or promotion of transglycosylation reactions. Instead, this inhibition occurs through a partial competitive mechanism. Imidazole binds to the Sfßgly active site, reducing the substrate affinity by about threefold, whereas the rate constant of product formation remains unchanged. The binding of imidazole within the active site was further confirmed by enzyme kinetic experiments in which imidazole and cellobiose competed to inhibit the hydrolysis of p-nitrophenyl ß-glucoside. Finally, imidazole interaction in the active site was also demonstrated by showing that it hinders access of carbodiimide to the Sfßgly catalytic residues, protecting them from chemical inactivation. In conclusion, imidazole binds in the Sfßgly active site, generating a partial competitive inhibition. Considering that GH1 ß-glucosidases share conserved active sites, this inhibition phenomenon is probably widespread among these enzymes, and this should be taken into account when considering the characterization of their recombinant forms.


Subject(s)
Glucosides , beta-Glucosidase , beta-Glucosidase/chemistry , beta-Glucosidase/metabolism , Catalytic Domain , Hydrolysis , Imidazoles/pharmacology
2.
Protein Sci ; 31(7): e4354, 2022 07.
Article in English | MEDLINE | ID: mdl-35762721

ABSTRACT

Diseases with readily available therapies may eventually prevail against the specific treatment by the acquisition of resistance. The constitutively active Abl1 tyrosine kinase known to cause chronic myeloid leukemia is an example, where patients may experience relapse after small inhibitor drug treatment. Mutations in the Abl1 tyrosine kinase domain (Abl1-KD) are a critical source of resistance and their emergence depends on the conformational states that have been observed experimentally: the inactive state, the active state, and the intermediate inactive state that resembles Src kinase. Understanding how resistant positions and amino acid identities are determined by selection pressure during drug treatment is necessary to improve future drug development or treatment decisions. We carry out in silico site-saturation mutagenesis over the Abl1-KD structure in a conformational context to evaluate the in situ and conformational stability energy upon mutation. Out of the 11 studied resistant positions, we determined that 7 of the resistant mutations favored the active conformation of Abl1-KD with respect to the inactive state. When, instead, the sequence optimization was modeled simultaneously at resistant positions, we recovered five known resistant mutations in the active conformation. These results suggested that the Abl1 resistance mechanism targeted substitutions that favored the active conformation. Further sequence variability, explored by ancestral reconstruction in Abl1-KD, showed that neutral genetic drift, with respect to amino acid variability, was specifically diminished in the resistant positions. Since resistant mutations are susceptible to chance with a certain probability of fixation, combining methodologies outlined here may narrow and limit the available sequence space for resistance to emerge, resulting in more robust therapeutic treatments over time.


Subject(s)
Leukemia, Myeloid, Chronic-Phase , Proto-Oncogene Proteins c-abl , Amino Acids , Drug Resistance, Neoplasm/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myeloid, Chronic-Phase/drug therapy , Leukemia, Myeloid, Chronic-Phase/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/genetics
3.
Protein Sci ; 29(9): 1879-1889, 2020 09.
Article in English | MEDLINE | ID: mdl-32597558

ABSTRACT

In this work, we investigated how activity and oligomeric state are related in a purified GH1 ß-glucosidase from Spodoptera frugiperda (Sfßgly). Gel filtration chromatography coupled to a multiple angle light scattering detector allowed separation of the homodimer and monomer states and determination of the dimer dissociation constant (KD ), which was in the micromolar range. Enzyme kinetic parameters showed that the dimer is on average 2.5-fold more active. Later, we evaluated the kinetics of homodimerization, scanning the changes in the Sfßgly intrinsic fluorescence over time when the dimer dissociates into the monomer after a large dilution. We described how the rate constant of monomerization (koff ) is affected by temperature, revealing the enthalpic and entropic contributions to the process. We also evaluated how the rate constant (kobs ) by which equilibrium is reached after dimer dilution behaves when varying the initial Sfßgly concentration. These data indicated that Sfßgly dimerizes through the conformational selection mechanism, in which the monomer undergoes a conformational exchange and then binds to a similar monomer, forming a more active homodimer. Finally, we noted that conformational selection reports and experiments usually rely on a ligand whose concentration is in excess, but for homodimerization, this approach does not hold. Hence, since our approach overcomes this limitation, this study not only is a new contribution to the comprehension of GH1 ß-glucosidases, but it can also help to elucidate protein interaction pathways.


Subject(s)
Glycoside Hydrolases/chemistry , Insect Proteins/chemistry , Protein Multimerization , Spodoptera/enzymology , Animals , Glycoside Hydrolases/genetics , Insect Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Spodoptera/genetics
4.
An Acad Bras Cienc ; 92(1): e20190491, 2020.
Article in English | MEDLINE | ID: mdl-32401840

ABSTRACT

The Commelina erecta L. (C. erecta) also known as erva-de-santa-luzia is reported by local population to have medical properties against some pathological conditions. In this study, two extracts of C. erecta leaves (aqueous and ethanolic) were phytochemically analysed and evaluated for their in-vitro antioxidant activities by DPPH, TBARS, NO assays and cell viability assays. The ultra-high performance liquid chromatography followed by tandem mass spectrometry analysis showed the presence of rutin and caffeic acid in aqueous and ethanolic extract. The total polyphenols in aqueous and ethanolic extracts found were 142.7 ± 3.0 and 123.1 ± 5.8 µg/mL of GAE, respectively. The ethanolic extract (5 mg/mL) inhibits TBARS by 33.8%, and the aqueous extract (5 mg/mL) exhibited scavenger property against nitric oxide derivatives to an extent of 77.8%. In cell culture, both extracts improved cell survivability under H2O2 induced oxidative stress. Thus, C. erecta extract is a good candidate to become a phytotherapic medicine.


Subject(s)
Antioxidants/pharmacology , Caffeic Acids/analysis , Chromatography, High Pressure Liquid/methods , Commelina/chemistry , Plant Extracts/pharmacology , Rutin/analysis , Animals , Cell Culture Techniques , Humans , Hydrogen Peroxide/pharmacokinetics , Oxidative Stress/drug effects , Phenols/analysis , Phytochemicals/analysis , Plant Leaves/chemistry , Polyphenols/analysis , Tandem Mass Spectrometry/methods
5.
An. acad. bras. ciênc ; 89(2): 1095-1109, Apr.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-886704

ABSTRACT

ABSTRACT Hepatic disorders such as steatosis and alcoholic steatohepatitis are common diseases that affect thousands of people around the globe. This study aims to identify the main phenol compounds using a new HPLC-ESI+-MS/MS method, to evaluate some oxidative stress parameters and the hepatoprotective action of green dwarf coconut water, caffeic and ascorbic acids on the liver and serum of rats treated with ethanol. The results showed five polyphenols in the lyophilized coconut water spiked with standards: chlorogenic acid (0.18 µM), caffeic acid (1.1 µM), methyl caffeate (0.03 µM), quercetin (0.08 µM) and ferulic acid (0.02 µM) isomers. In the animals, the activity of the serum γ-glutamyltranspeptidase (γ-GT) was reduced to 1.8 I.U/L in the coconut water group, 3.6 I.U/L in the ascorbic acid group and 2.9 I.U/L in the caffeic acid groups, when compared with the ethanol group (5.1 I.U/L, p<0.05). Still in liver, the DNA analysis demonstrated a decrease of oxidized bases compared to ethanol group of 36.2% and 48.0% for pretreated and post treated coconut water group respectively, 42.5% for the caffeic acid group, and 34.5% for the ascorbic acid group. The ascorbic acid was efficient in inhibiting the thiobarbituric acid reactive substances (TBARS) in the liver by 16.5% in comparison with the ethanol group. These data indicate that the green dwarf coconut water, caffeic and ascorbic acids have antioxidant, hepatoprotective and reduced DNA damage properties, thus decreasing the oxidative stress induced by ethanol metabolism.


Subject(s)
Animals , Male , Ascorbic Acid/pharmacology , DNA Damage/drug effects , Caffeic Acids/pharmacology , Cocos/chemistry , Oxidative Stress/drug effects , Ethanol/pharmacology , Liver/drug effects , Time Factors , Triglycerides/blood , Water/pharmacology , Lipid Peroxidation , Cholesterol/blood , Reproducibility of Results , Thiobarbituric Acid Reactive Substances , Rats, Wistar , Tandem Mass Spectrometry , Liver/metabolism , Antioxidants/pharmacology
6.
An Acad Bras Cienc ; 89(2): 1095-1109, 2017.
Article in English | MEDLINE | ID: mdl-28513780

ABSTRACT

Hepatic disorders such as steatosis and alcoholic steatohepatitis are common diseases that affect thousands of people around the globe. This study aims to identify the main phenol compounds using a new HPLC-ESI+-MS/MS method, to evaluate some oxidative stress parameters and the hepatoprotective action of green dwarf coconut water, caffeic and ascorbic acids on the liver and serum of rats treated with ethanol. The results showed five polyphenols in the lyophilized coconut water spiked with standards: chlorogenic acid (0.18 µM), caffeic acid (1.1 µM), methyl caffeate (0.03 µM), quercetin (0.08 µM) and ferulic acid (0.02 µM) isomers. In the animals, the activity of the serum γ-glutamyltranspeptidase (γ-GT) was reduced to 1.8 I.U/L in the coconut water group, 3.6 I.U/L in the ascorbic acid group and 2.9 I.U/L in the caffeic acid groups, when compared with the ethanol group (5.1 I.U/L, p<0.05). Still in liver, the DNA analysis demonstrated a decrease of oxidized bases compared to ethanol group of 36.2% and 48.0% for pretreated and post treated coconut water group respectively, 42.5% for the caffeic acid group, and 34.5% for the ascorbic acid group. The ascorbic acid was efficient in inhibiting the thiobarbituric acid reactive substances (TBARS) in the liver by 16.5% in comparison with the ethanol group. These data indicate that the green dwarf coconut water, caffeic and ascorbic acids have antioxidant, hepatoprotective and reduced DNA damage properties, thus decreasing the oxidative stress induced by ethanol metabolism.


Subject(s)
Ascorbic Acid/pharmacology , Caffeic Acids/pharmacology , Cocos/chemistry , DNA Damage/drug effects , Ethanol/pharmacology , Liver/drug effects , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology , Cholesterol/blood , Lipid Peroxidation , Liver/metabolism , Male , Rats, Wistar , Reproducibility of Results , Tandem Mass Spectrometry , Thiobarbituric Acid Reactive Substances , Time Factors , Triglycerides/blood , Water/pharmacology
7.
J Med Food ; 18(7): 802-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25651375

ABSTRACT

Coconut water (CW) is a natural nutritious beverage, which contains several biologically active compounds that are traditionally used in the treatment of diarrhea and rehydration. Several works with CW have been related with antioxidant activity, which is very important in the diabetic state. To evaluate the hypoglycemic and nephroprotective activities of CW, alloxan-induced diabetic rats were pre- and post-treated by gavage with CW (3 mL/kg), caffeic acid (CA) (10 and 15 mg/kg), and acarbose (Acb) (714 µg/kg) during a period of 16 days. Body weight, blood glucose, glycated hemoglobin (HbA1c), and Amadori products in plasma and kidney homogenates were evaluated in all groups and used as parameters for the monitoring of the diabetic state. The results showed that rats of the CW+diabetic group had maintenance in blood glucose compared with the control group (P<.05) in addition to a decrease of HbA1c levels and increase of body weight when compared with the diabetic group rats (P<.05). The animals of the CA and CA+diabetic groups did not have significant variation of body weight (P<.05) during the experiment; however, they showed decrease in their HbA1c and urea levels in plasma as well as Amadori products in kidney homogenates when compared with the diabetic group (P<.05). Our results indicate that CW has multiple beneficial effects in diabetic rats for preventing hyperglycemia and oxidative stress caused by alloxan.


Subject(s)
Beverages , Cocos/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/prevention & control , Hypoglycemic Agents/administration & dosage , Acarbose/administration & dosage , Alloxan , Animals , Antioxidants/administration & dosage , Caffeic Acids/administration & dosage , Glycated Hemoglobin/analysis , Hyperglycemia/prevention & control , Male , Oxidative Stress/drug effects , Phytotherapy , Rats , Rats, Wistar , Urea/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...