Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurorobot ; 16: 806898, 2022.
Article in English | MEDLINE | ID: mdl-35401137

ABSTRACT

Deep learning has been widely used for inferring robust grasps. Although human-labeled RGB-D datasets were initially used to learn grasp configurations, preparation of this kind of large dataset is expensive. To address this problem, images were generated by a physical simulator, and a physically inspired model (e.g., a contact model between a suction vacuum cup and object) was used as a grasp quality evaluation metric to annotate the synthesized images. However, this kind of contact model is complicated and requires parameter identification by experiments to ensure real world performance. In addition, previous studies have not considered manipulator reachability such as when a grasp configuration with high grasp quality is unable to reach the target due to collisions or the physical limitations of the robot. In this study, we propose an intuitive geometric analytic-based grasp quality evaluation metric. We further incorporate a reachability evaluation metric. We annotate the pixel-wise grasp quality and reachability by the proposed evaluation metric on synthesized images in a simulator to train an auto-encoder-decoder called suction graspability U-Net++ (SG-U-Net++). Experiment results show that our intuitive grasp quality evaluation metric is competitive with a physically-inspired metric. Learning the reachability helps to reduce motion planning computation time by removing obviously unreachable candidates. The system achieves an overall picking speed of 560 PPH (pieces per hour).

2.
Sensors (Basel) ; 20(3)2020 Jan 28.
Article in English | MEDLINE | ID: mdl-32012874

ABSTRACT

Bin-picking of small parcels and other textureless planar-faced objects is a common task at warehouses. A general color image-based vision-guided robot picking system requires feature extraction and goal image preparation of various objects. However, feature extraction for goal image matching is difficult for textureless objects. Further, prior preparation of huge numbers of goal images is impractical at a warehouse. In this paper, we propose a novel depth image-based vision-guided robot bin-picking system for textureless planar-faced objects. Our method uses a deep convolutional neural network (DCNN) model that is trained on 15,000 annotated depth images synthetically generated in a physics simulator to directly predict grasp points without object segmentation. Unlike previous studies that predicted grasp points for a robot suction hand with only one vacuum cup, our DCNN also predicts optimal grasp patterns for a hand with two vacuum cups (left cup on, right cup on, or both cups on). Further, we propose a surface feature descriptor to extract surface features (center position and normal) and refine the predicted grasp point position, removing the need for texture features for vision-guided robot control and sim-to-real modification for DCNN model training. Experimental results demonstrate the efficiency of our system, namely that a robot with 7 degrees of freedom can pick randomly posed textureless boxes in a cluttered environment with a 97.5% success rate at speeds exceeding 1000 pieces per hour.

SELECTION OF CITATIONS
SEARCH DETAIL
...