Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Fish Dis ; : e13988, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943363

ABSTRACT

Melanized focal changes (MFCs) in the fillet of farmed Atlantic salmon is a major quality concern. The changes are thought to initially appear as acute red focal changes (RFCs) that progress into chronic MFCs. Recent findings have indicated that hypoxia may be important in their development, possibly leading to necrosis affecting not only myocytes but also adipocytes. Thus, the aim of this study was to investigate possible hypoxic conditions in RFCs and the subsequent inflammatory responses and lesions in the adipose tissue in RFCs and MFCs. A collection of RFCs, MFCs and control muscle samples from several groups of farmed salmon was studied. Using immunohistochemistry, we found induction of the hypoxia-inducible factor 1 pathway in RFCs. Histological investigations of RFCs and MFCs revealed different stages of fat necrosis, including necrotic adipocytes, a myospherulosis-like reaction and the formation of pseudocystic spaces. Accumulations of foamy macrophages were detected in MFCs, indicating degradation and phagocytosis of lipids. Using in situ hybridization, we showed the presence of tyrosinase- and tyrosinase-related protein-1-expressing amelanotic cells in RFCs, which in turn became melanized in MFCs. In conclusion, we propose a sequence of events leading to the formation of MFCs, highlighting the pivotal role of adiposity, hypoxia and fat necrosis.

3.
J Fish Dis ; 42(6): 935-945, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30972792

ABSTRACT

Melanized focal changes in skeletal muscle of farmed Atlantic salmon (Salmo salar) are a major quality problem. The aetiology is unknown, but infection with Piscine orthoreovirus (PRV) has been associated with the condition. Here, we addressed the pathogenesis of red and melanized focal changes and their association with PRV. First, a population of farmed fish (PRV-negative prior to sea transfer) was sequentially investigated throughout the seawater period. The fish were autopsied and tested for PRV infection. Muscular changes were described by macroscopy and histology, and a classification system was established. Second, in an experimental infection trial, PRV was injected intramuscularly to induce changes. The farmed fish was gradually infected with PRV. Red focal changes occurred throughout the observation period with a low prevalence regardless of PRV status. Melanized changes were highly diverse and their prevalence increased during the trial. Changes of low macroscopic grade and histological category were more prevalent in PRV-negative fish. Diffuse granulomatous melanized changes only occurred after PRV infection. No muscular changes were observed in the experimentally challenged fish. Our studies do not indicate that PRV infection causes red focal changes, but seems important in the development of granulomatous melanized changes.


Subject(s)
Fish Diseases/virology , Muscle, Skeletal/pathology , Orthoreovirus/pathogenicity , Reoviridae Infections/veterinary , Salmo salar/virology , Animals , Aquaculture , Fish Diseases/pathology , Melanins , Muscle, Skeletal/virology , Norway , RNA, Viral/genetics , Reoviridae Infections/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...